Probing the thermal effects of voltage hysteresis in anionic redox-based lithium-rich cathodes using isothermal calorimetry

[1]  A. Yamada,et al.  Highly Reversible Oxygen‐Redox Chemistry at 4.1 V in Na4/7−x[□1/7Mn6/7]O2 (□: Mn Vacancy) , 2018 .

[2]  D. Takamatsu,et al.  Electrochemical reaction mechanisms under various charge-discharge operating conditions for Li1.2Ni0.13Mn0.54Co0.13O2 in a lithium-ion battery , 2018, Journal of Solid State Chemistry.

[3]  H. Gasteiger,et al.  Origin of High Capacity and Poor Cycling Stability of Li-Rich Layered Oxides: A Long-Duration in Situ Synchrotron Powder Diffraction Study , 2018 .

[4]  Jean-Marie Tarascon,et al.  Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries , 2018 .

[5]  P. Bruce,et al.  Lithium manganese oxyfluoride as a new cathode material exhibiting oxygen redox , 2018 .

[6]  P. Bruce,et al.  Oxygen redox chemistry without excess alkali-metal ions in Na2/3[Mg0.28Mn0.72]O2. , 2018, Nature chemistry.

[7]  J. Tarascon,et al.  Fundamental interplay between anionic/cationic redox governing the kinetics and thermodynamics of lithium-rich cathodes , 2017, Nature Communications.

[8]  William E. Gent,et al.  Coupling between oxygen redox and cation migration explains unusual electrochemistry in lithium-rich layered oxides , 2017, Nature Communications.

[9]  J. Tarascon,et al.  Decoupling Cationic–Anionic Redox Processes in a Model Li-Rich Cathode via Operando X-ray Absorption Spectroscopy , 2017 .

[10]  S. Kjelstrup,et al.  Single Electrode Entropy Change for LiCoO2 Electrodes , 2017 .

[11]  Ji‐Guang Zhang,et al.  Li‐ and Mn‐Rich Cathode Materials: Challenges to Commercialization , 2017 .

[12]  Peter Lamp,et al.  Nickel-Rich Layered Cathode Materials for Automotive Lithium-Ion Batteries: Achievements and Perspectives , 2017 .

[13]  Kei Mitsuhara,et al.  Origin of stabilization and destabilization in solid-state redox reaction of oxide ions for lithium-ion batteries , 2016, Nature Communications.

[14]  M. Winter,et al.  Best Practice: Performance and Cost Evaluation of Lithium Ion Battery Active Materials with Special Emphasis on Energy Efficiency , 2016 .

[15]  K. Edström,et al.  Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen. , 2016, Nature chemistry.

[16]  Yoshio Kobayashi,et al.  Intermediate honeycomb ordering to trigger oxygen redox chemistry in layered battery electrode , 2016, Nature Communications.

[17]  Xiaoliang Feng,et al.  Origin of hysteresis between charge and discharge processes in lithium-rich layer-structured cathode material for lithium-ion battery , 2015 .

[18]  Mahalingam Balasubramanian,et al.  Review of the U.S. Department of Energy's "deep dive" effort to understand voltage fade in Li- and Mn-rich cathodes. , 2015, Accounts of chemical research.

[19]  A. Jansen,et al.  Electrochemical Modeling and Performance of a Lithium- and Manganese-Rich Layered Transition-Metal Oxide Positive Electrode , 2015 .

[20]  Brandon R. Long,et al.  Re-entrant lithium local environments and defect driven electrochemistry of Li- and Mn-rich Li-ion battery cathodes. , 2015, Journal of the American Chemical Society.

[21]  Mingxue Tang,et al.  Solid-State NMR on the Family of Positive Electrode Materials Li_2Ru_{1-y}Sn_yO_3 for Li-ion batteries , 2014 .

[22]  Jeff Dahn,et al.  Determination of the Voltage-Dependence of Parasitic Heat Flow in Lithium Ion Cells Using Isothermal Microcalorimetry , 2014 .

[23]  Ellen Ivers-Tiffée,et al.  A novel and precise measuring method for the entropy of lithium-ion cells: ΔS via electrothermal impedance spectroscopy , 2014 .

[24]  Anton Van der Ven,et al.  Designing the next generation high capacity battery electrodes , 2014 .

[25]  K Ramesha,et al.  Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. , 2013, Nature materials.

[26]  Kevin G. Gallagher,et al.  Examining Hysteresis in Composite xLi2MnO3·(1−x)LiMO2 Cathode Structures , 2013 .

[27]  Tsutomu Ohzuku,et al.  High-capacity lithium insertion materials of lithium nickel manganese oxides for advanced lithium-ion batteries: toward rechargeable capacity more than 300 mA h g−1 , 2011 .

[28]  T. Fuller,et al.  A Critical Review of Thermal Issues in Lithium-Ion Batteries , 2011 .

[29]  Dinh Vinh Do,et al.  Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery , 2010 .

[30]  D. Bedeaux,et al.  Non-equilibrium Thermodynamics of Heterogeneous Systems , 2008, Series on Advances in Statistical Mechanics.

[31]  Ralph E. White,et al.  Review of Models for Predicting the Cycling Performance of Lithium Ion Batteries , 2006 .

[32]  M. D. Rooij,et al.  Electrochemical Methods: Fundamentals and Applications , 2003 .

[33]  Brent Fultz,et al.  The entropy and enthalpy of lithium intercalation into graphite , 2003 .

[34]  J. Newman,et al.  Heats of mixing and of entropy in porous insertion electrodes , 2003 .

[35]  J. Newman,et al.  Thermal Modeling of Porous Insertion Electrodes , 2003 .

[36]  Minoru Inaba,et al.  Calorimetric Study on the Hysteresis in the Charge‐Discharge Profiles of Mesocarbon Microbeads Heat‐Treated at Low Temperatures , 2000 .

[37]  I. Prigogine,et al.  Book Review: Modern Thermodynamics: From Heat Engines to Dissipative Structures , 1998 .

[38]  Jean-Pierre Sauvage,et al.  Transition Metal-Containing Rotaxanes and Catenanes in Motion: Toward Molecular Machines and Motors , 1998 .

[39]  Jeff Dahn,et al.  Hysteresis observed in quasi open-circuit voltage measurements of lithium insertion in hydrogen-containing carbons , 1997 .

[40]  J. Newman,et al.  Heat‐Generation Rate and General Energy Balance for Insertion Battery Systems , 1997 .

[41]  J. Rouxel Anion–Cation Redox Competition and the Formation of New Compounds in Highly Covalent Systems , 1996 .

[42]  Jeff Dahn,et al.  Hysteresis during Lithium Insertion in Hydrogen‐Containing Carbons , 1996 .

[43]  Jean-Marie Tarascon,et al.  Performance of Bellcore's plastic rechargeable Li-ion batteries , 1996 .

[44]  M. Sano Mechanism of the molecular hysteresis , 1995 .

[45]  M. Sano,et al.  "Molecular hysteresis" in an electrochemical system revisited , 1994 .

[46]  Dahn,et al.  Entropy of the intercalation compound LixMo6Se8 from calorimetry of electrochemical cells. , 1985, Physical review. B, Condensed matter.

[47]  John Newman,et al.  A General Energy Balance for Battery Systems , 1984 .

[48]  J. Dahn,et al.  Entropy measurements on LixTiS2 , 1983 .

[49]  R. Huggins,et al.  Thermodynamic Study of the Lithium‐Tin System , 1981 .

[50]  J. Dahn,et al.  The Effect of Different Li(Ni1-x-yMnxCoy)O2Positive Electrode Materials and Coatings on Parasitic Heat Flow as Measured by Isothermal Microcalorimetry, Ultra-High Precision Coulometry and Long Term Cycling , 2017 .

[51]  Yang-Kook Sun,et al.  Nickel‐Rich and Lithium‐Rich Layered Oxide Cathodes: Progress and Perspectives , 2016 .

[52]  B. Polzin,et al.  The Effect of Entropy and Enthalpy Changes on the Thermal Behavior of Li-Mn-Rich Layered Composite Cathode Materials , 2016 .

[53]  L. Downie,et al.  The Impact of Electrolyte Composition on Parasitic Reactions in Lithium Ion Cells Charged to 4.7 V Determined Using Isothermal Microcalorimetry , 2016 .

[54]  D. A. D. Corte,et al.  Editors' Choice—Practical Assessment of Anionic Redox in Li-Rich Layered Oxide Cathodes: A Mixed Blessing for High Energy Li-Ion Batteries , 2016 .

[55]  Brandon R. Long,et al.  Physical Theory of Voltage Fade in Lithium- and Manganese-Rich Transition Metal Oxides , 2015 .

[56]  L. Downie,et al.  Determination of the Voltage Dependence of Parasitic Heat Flow in Lithium Ion Cells Using Isothermal Microcalorimetry , 2014 .

[57]  Kevin G. Gallagher,et al.  Quantifying Hysteresis and Voltage Fade in xLi2MnO3●(1-x)LiMn0.5Ni0.5O2 Electrodes as a Function of Li2MnO3 Content , 2014 .

[58]  J. Dahn,et al.  Measurement of Parasitic Reactions in Li Ion Cells by Electrochemical Calorimetry , 2012 .

[59]  白井 光雲,et al.  現代の熱力学 = Modern thermodynamics , 2011 .

[60]  P. Cousot Achievements and Perspectives , 2000 .