Enhancing interactive particle visualization with advanced shading models

Particle-based simulation methods are used to model a wide range of complex phenomena and to solve time-dependent problems of various scales. Effective visualization of the resulting state should communicate subtle changes in the three-dimensional structure, spatial organization, and qualitative trends within a simulation as it evolves. We take steps toward understanding and using advanced shading models in the context of interactive particle visualization. Specifically, the impact of ambient occlusion and physically based diffuse interreflection is investigated using a formal user study. We find that these shading models provide additional visual cues that enable viewers to better understand subtle features within particle datasets. We also describe a visualization process that enables interactive navigation and exploration of large particle datasets, rendered with illumination effects from advanced shading models. Informal feedback from application scientists indicates that the results of this process enhance the data analysis tasks necessary for understanding complex particle datasets.

[1]  Hayden Landis,et al.  Production-Ready Global Illumination , 2004 .

[2]  Robert M. Gray,et al.  An Improvement of the Minimum Distortion Encoding Algorithm for Vector Quantization , 1985, IEEE Trans. Commun..

[3]  Chris Christou,et al.  Surface Gradients, Contours and the Perception of Surface Attitude in Images of Complex Scenes , 1996, Perception.

[4]  A. Gilchrist,et al.  Perception of Lightness and Illumination in a World of One Reflectance , 1984, Perception.

[5]  Pavel Zemcík,et al.  Particle rendering pipeline , 2003, SCCG '03.

[6]  Stephen H. Westin,et al.  Effects of rendering on shape perception in automobile design , 2004, APGV '04.

[7]  Pascal Mamassian,et al.  Illusory motion from shadows , 1996, Nature.

[8]  Ann McNamara Exploring perceptual equivalence between real and simulated imagery , 2005, APGV '05.

[9]  A Blake,et al.  Shape from specularities: computation and psychophysics. , 1991, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[10]  Michael S. Langer,et al.  A model of how interreflections can affect color appearance , 2001 .

[11]  Donald P. Greenberg,et al.  An experimental evaluation of computer graphics imagery , 1986, TOGS.

[12]  Sergey Zhukov,et al.  An Ambient Light Illumination Model , 1998, Rendering Techniques.

[13]  J. Koenderink,et al.  Perception of local shape from shading , 1993, Perception & psychophysics.

[14]  David S. Ebert,et al.  Volume illustration: non-photorealistic rendering of volume models , 2000 .

[15]  E. Mingolla,et al.  Perception of surface curvature and direction of illumination from patterns of shading. , 1983, Journal of experimental psychology. Human perception and performance.

[16]  Kevin Liang,et al.  Interactive parallel visualization of large particle datasets , 2004 .

[17]  G. Orban,et al.  Perception of Three-Dimensional Shape From Specular Highlights, Deformations of Shading, and Other Types of Visual Information , 2004, Psychological science.

[18]  Penny Rheingans,et al.  Perceptual Principles for Effective Visualizations , 1995, Perceptual Issues in Visualization.

[19]  A. Hurlbert,et al.  Perception of three-dimensional shape influences colour perception through mutual illumination , 1999, Nature.

[20]  Charles D. Hansen,et al.  Parallel Sphere Rendering , 1995, Parallel Comput..

[21]  Joe Michael Kniss,et al.  A Model for Volume Lighting and Modeling , 2003, IEEE Trans. Vis. Comput. Graph..

[22]  Pasi Fränti,et al.  Fast and memory efficient implementation of the exact PNN , 2000, IEEE Trans. Image Process..

[23]  Backward Ray Tracing Backward Ray Tracing , 1986 .

[24]  Ann McNamara,et al.  Comparing Real & Synthetic Scenes using Human Judgements of Lightness , 2000, Rendering Techniques.

[25]  Patricia Monger,et al.  Interactive Parallel Visualization of Large Particle Datasets , 2004, EGPGV.

[26]  Brian E. Smits,et al.  Use of interreflection and shadow for surface contact , 2001, Perception & psychophysics.

[27]  A. James Stewart,et al.  Vicinity shading for enhanced perception of volumetric data , 2003, IEEE Visualization, 2003. VIS 2003..

[28]  William B. Thompson,et al.  Visual Cues for Perceiving Distances from Objects to Surfaces , 2002, Presence: Teleoperators & Virtual Environments.

[29]  Peter Shirley,et al.  Visual cues for imminent object contact in realistic virtual environments , 2000 .

[30]  Bui Tuong Phong Illumination for computer generated pictures , 1975, Commun. ACM.

[31]  J. H. Ward Hierarchical Grouping to Optimize an Objective Function , 1963 .

[32]  Christine D. Piatko,et al.  Comparing Real and Synthetic Images: Some Ideas about Metrics , 1995, Rendering Techniques.

[33]  Donald P. Greenberg,et al.  Perceiving spatial relationships in computer-generated images , 1992, IEEE Computer Graphics and Applications.

[34]  Peter Shirley,et al.  Visual cues for imminent object contact in realistic virtual environments , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).

[35]  Edward Cutrell,et al.  Measuring the Perception of Visual Realism in Images , 2001, Rendering Techniques.

[36]  L. Torres,et al.  An improvement on codebook search for vector quantization , 1994, IEEE Trans. Commun..

[37]  Charles D. Hansen,et al.  Interactive display of isosurfaces with global illumination , 2006, IEEE Transactions on Visualization and Computer Graphics.

[38]  J. Todd,et al.  Ordinal structure in the visual perception and cognition of smoothly curved surfaces. , 1989, Psychological review.