A multi-view approach to cDNA micro-array analysis

Microarray has emerged as a powerful technology that enables biologists to study thousands of genes simultaneously, therefore, to obtain a better understanding of the gene interaction and regulation mechanisms. This paper is concerned with improving the processes involved in the analysis of microarray image data. The main focus is to clarify an image's feature space in an unsupervised manner. In this paper, the Image Transformation Engine (ITE), combined with different filters, is investigated. The proposed methods are applied to a set of real-world cDNA images. The MatCNN toolbox is used during the segmentation process. Quantitative comparisons between different filters are carried out. It is shown that the CLD filter is the best one to be applied with the ITE.

[1]  Lin-Bao Yang,et al.  Cellular neural networks: theory , 1988 .

[2]  Leon O. Chua,et al.  Cellular neural networks: applications , 1988 .

[3]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Tamás Roska,et al.  The CNN universal machine. I. The architecture , 1992, CNNA '92 Proceedings Second International Workshop on Cellular Neural Networks and Their Applications.

[5]  Tamás Roska,et al.  The CNN universal machine , 1993 .

[6]  P. Lions,et al.  Axioms and fundamental equations of image processing , 1993 .

[7]  Leon O. Chua,et al.  The CNN paradigm , 1993 .

[8]  Rolf Adams,et al.  Seeded Region Growing , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Tamás Roska,et al.  Rotation invariant detection of moving and standing objects using analogic cellular neural network algorithms based on ring codes , 1995 .

[10]  Ronald W. Davis,et al.  Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray , 1995, Science.

[11]  Roger D. Boyle,et al.  New segmentation techniques for document image analysis , 1995, Image Vis. Comput..

[12]  L. Penland,et al.  Use of a cDNA microarray to analyse gene expression patterns in human cancer , 1996, Nature Genetics.

[13]  P. Brown,et al.  A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization. , 1996, Genome research.

[14]  Ricardo Carmona-Galán,et al.  A CNN Universal Chip in CMOS Technology , 1996, Int. J. Circuit Theory Appl..

[15]  Leon O. Chua,et al.  Spatial logic algorithms using basic morphological analogic CNN operations , 1996, Int. J. Circuit Theory Appl..

[16]  Joachim Weickert,et al.  Anisotropic diffusion in image processing , 1996 .

[17]  Tamás Roska,et al.  Dynamic Analogic CNN Algorithms for a Complex Recognition Task - A First Step Towards a Bionic Eyeglass , 1996, Int. J. Circuit Theory Appl..

[18]  Ángel Rodríguez-Vázquez,et al.  A 0.8-μm CMOS two-dimensional programmable mixed-signal focal-plane array processor with on-chip binary imaging and instructions storage , 1997, IEEE J. Solid State Circuits.

[19]  P. Brown,et al.  Exploring the metabolic and genetic control of gene expression on a genomic scale. , 1997, Science.

[20]  Leon O. Chua,et al.  CNN: A Vision of Complexity , 1997 .

[21]  Tamás Roska,et al.  CNN-based difference-controlled adaptive non-linear image filters , 1998, Int. J. Circuit Theory Appl..

[22]  J. M. Cruz,et al.  A 16 × 16 Cellular Neural Network Universal Chip: The First Complete Single-Chip Dynamic Computer Array with Distributed Memory and with Gray-Scale Input-Output , 1998 .

[23]  Ching Y. Suen,et al.  A recursive thresholding technique for image segmentation , 1998, IEEE Trans. Image Process..

[24]  Leon O. Chua,et al.  Computing with Front Propagation: Active Contour And Skeleton Models In Continuous-Time CNN , 1999, J. VLSI Signal Process..

[25]  S. Gygi,et al.  Correlation between Protein and mRNA Abundance in Yeast , 1999, Molecular and Cellular Biology.

[26]  Tamás Roska,et al.  CNN‐based spatio‐temporal nonlinear filtering and endocardial boundary detection in echocardiography , 1999, Int. J. Circuit Theory Appl..

[27]  P. Brown,et al.  DNA arrays for analysis of gene expression. , 1999, Methods in enzymology.

[28]  Ash A. Alizadeh,et al.  Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling , 2000, Nature.

[29]  Michael Kerckhove,et al.  Scale-Space and Morphology in Computer Vision , 2001, Lecture Notes in Computer Science 2106.

[30]  P.N.T. Wells,et al.  Handbook of Image and Video Processing , 2001 .

[31]  S. K. Moore Making chips to probe genes , 2001 .

[32]  R. Lyne,et al.  The transcriptional program of meiosis and sporulation in fission yeast , 2002, Nature Genetics.

[33]  Ajay N. Jain,et al.  Fully automatic quantification of microarray image data. , 2002, Genome research.

[34]  Terence P. Speed,et al.  Comparison of Methods for Image Analysis on cDNA Microarray Data , 2002 .

[35]  P. Liatsis,et al.  MICROARRAY IMAGE ANALYSIS , 2002 .

[36]  Jörg Rahnenführer,et al.  Unsupervised technique for robust target separation and analysis of DNA microarray spots through adaptive pixel clustering , 2002, Bioinform..

[37]  P Arena,et al.  Cellular neural networks for real-time DNA microarray analysis. , 2002, IEEE engineering in medicine and biology magazine : the quarterly magazine of the Engineering in Medicine & Biology Society.

[38]  Csaba Rekeczky,et al.  CNN architectures for constrained diffusion based locally adaptive image processing , 2002, Int. J. Circuit Theory Appl..

[39]  R.S.H. Istepanian,et al.  Application of wavelet modulus maxima in microarray spots recognition , 2003, IEEE Transactions on NanoBioscience.

[40]  R.S.H. Istepanian,et al.  Microarray image enhancement by denoising using stationary wavelet transform , 2003, IEEE Transactions on NanoBioscience.

[41]  G. Sagerer,et al.  Methods for automatic microarray image segmentation , 2003, IEEE Transactions on NanoBioscience.

[42]  Jens Michael Carstensen,et al.  Bayesian Grid Matching , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[43]  Neil D. Lawrence,et al.  Bayesian processing of microarray images , 2003, 2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718).

[44]  D. O'Kane,et al.  Gene expression microarrays. , 2003, Methods in molecular medicine.

[45]  Ángel Rodríguez-Vázquez,et al.  ACE16k: A 128x128 Focal Plane Analog Processor with Digital I/O , 2003, Int. J. Neural Syst..

[46]  Nikolas P. Galatsanos,et al.  An unsupervised artifact correction approach for the analysis of DNA microarray images , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[47]  D. Bozinov Autonomous system for web-based microarray image analysis , 2003, IEEE Transactions on NanoBioscience.

[48]  Rastislav Lukac,et al.  APPLICATION OF THE ADAPTIVE CENTER-WEIGHTED VECTOR MEDIAN FRAMEWORK FOR THE ENHANCEMENT OF CDNA MICROARRAY IMAGES , 2003 .

[49]  A. Venetsanopoulos,et al.  A multichannel order-statistic technique for cDNA microarray image processing , 2004, IEEE Transactions on NanoBioscience.

[50]  Bülent Sankur,et al.  Survey over image thresholding techniques and quantitative performance evaluation , 2004, J. Electronic Imaging.

[51]  Peter Bajcsy Gridline: automatic grid alignment DNA microarray scans , 2004, IEEE Transactions on Image Processing.

[52]  K Fraser,et al.  Copasetic analysis: a framework for the blind analysis of microarray imagery. , 2004, Systems biology.

[53]  Mitsuo Gen,et al.  Fuzzy Methods for Voice-Based Person Authentication , 2004 .

[54]  Yoganand Balagurunathan,et al.  Noise factor analysis for cDNA microarrays. , 2004, Journal of biomedical optics.

[55]  Ernst Wit,et al.  Statistics for Microarrays : Design, Analysis and Inference , 2004 .

[56]  Nikolas P. Galatsanos,et al.  Mixture model analysis of DNA microarray images , 2005, IEEE Transactions on Medical Imaging.

[57]  Jacques Cohen,et al.  Computer science and bioinformatics , 2005, CACM.

[58]  Rastislav Lukac,et al.  cDNA microarray image processing using fuzzy vector filtering framework , 2005, Fuzzy Sets Syst..

[59]  P. Newton,et al.  Dendritic cells in viral pathogenesis: protective or defective? , 2005, International journal of experimental pathology.

[60]  K Fraser cDNA microarray image analysis : a fully automated framework. , 2006 .

[61]  George C. Kagadis,et al.  Improving gene quantification by adjustable spot-image restoration , 2007, Bioinform..

[62]  Mohammad Hassan Moradi,et al.  Image Sifting for Micro Array Image Enhancement , 2007, CAIP.

[63]  Andrew Chi-Sing Leung,et al.  Parallelization of cellular neural networks on GPU , 2008, Pattern Recognit..

[64]  A. Rak,et al.  GPU powered CNN simulator (SIMCNN) with graphical flow based programmability , 2008, 2008 11th International Workshop on Cellular Neural Networks and Their Applications.

[65]  Daniel Morris,et al.  Blind Microarray Gridding: A New Framework , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[66]  Guilherme N. DeSouza,et al.  GPU-based simulation of cellular neural networks for image processing , 2009, 2009 International Joint Conference on Neural Networks.

[67]  S S Manjunath Microarray image analysis , 2012 .