Enhancement of elasto-dielectrics by homogenization of active charges
暂无分享,去创建一个
[1] A. Gloria,et al. On Einstein's effective viscosity formula. , 2020, 2008.03837.
[2] O. Lopez-Pamies,et al. Homogenization of time-dependent dielectric composites containing space charges, with applications to polymer nanoparticulate composites , 2019, International Journal of Non-Linear Mechanics.
[3] A. Gloria,et al. Multiscale functional inequalities in probability: Constructive approach , 2017 .
[4] S. Armstrong,et al. Quantitative Stochastic Homogenization and Large-Scale Regularity , 2017, Grundlehren der mathematischen Wissenschaften.
[5] A. Gloria,et al. Analyticity of Homogenized Coefficients Under Bernoulli Perturbations and the Clausius–Mossotti Formulas , 2015, 1502.03303.
[6] F. Otto,et al. A Regularity Theory for Random Elliptic Operators , 2014, Milan Journal of Mathematics.
[7] Felix Otto,et al. Quantitative results on the corrector equation in stochastic homogenization , 2014, 1409.0801.
[8] Z. Ounaies,et al. Extreme enhancement and reduction of the dielectric response of polymer nanoparticulate composites via interphasial charges , 2014 .
[9] Hakobyan Yeranuhi,et al. Random Heterogeneous Materials , 2008 .
[10] Gerhard M. Sessler,et al. DC-biased ferroelectrets with large piezoelectric d33-coefficients , 2008 .
[11] S. Torquato,et al. Random Heterogeneous Materials: Microstructure and Macroscopic Properties , 2005 .
[12] Qiming Zhang,et al. Colossal dielectric and electromechanical responses in self-assembled polymeric nanocomposites , 2005 .
[13] J. Fothergill,et al. Internal charge behaviour of nanocomposites , 2004 .
[14] G. Sessler,et al. Ferroelectrets: Soft Electroactive Foams for Transducers , 2004 .
[15] Louis Nirenberg,et al. Estimates for elliptic systems from composite material , 2003 .
[16] M. Vogelius,et al. Gradient Estimates for Solutions to Divergence Form Elliptic Equations with Discontinuous Coefficients , 2000 .
[17] A. Mccarthy. Development , 1996, Current Opinion in Neurobiology.
[18] Marco Avellaneda,et al. Lp bounds on singular integrals in homogenization , 1991 .
[19] M. Avellaneda,et al. Compactness methods in the theory of homogenization , 1987 .
[20] A. Bensoussan,et al. Asymptotic analysis for periodic structures , 1979 .
[21] J. D. Eshelby. The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[22] Victor Lefèvre,et al. Homogenization of Elastic Dielectric Composites with Rapidly Oscillating Passive and Active Source Terms , 2017, SIAM J. Appl. Math..
[23] K. Bhattacharya,et al. Dielectric elastomer composites , 2012 .
[24] R. Ogden,et al. Nonlinear electroelasticity , 2005 .
[25] P. Bassanini,et al. Elliptic Partial Differential Equations of Second Order , 1997 .
[26] V. Zhikov,et al. Homogenization of Differential Operators and Integral Functionals , 1994 .
[27] F. Murat,et al. Compacité par compensation , 1978 .
[28] P. Curie,et al. Développement par compression de l'électricité polaire dans les cristaux hémièdres à faces inclinées , 1880 .
[29] R. Clausius,et al. Die mechanische Behandlung der Electricität , 1879 .
[30] J. Maxwell. A Treatise on Electricity and Magnetism , 1873, Nature.