Enhancement of elasto-dielectrics by homogenization of active charges

[1]  A. Gloria,et al.  On Einstein's effective viscosity formula. , 2020, 2008.03837.

[2]  O. Lopez-Pamies,et al.  Homogenization of time-dependent dielectric composites containing space charges, with applications to polymer nanoparticulate composites , 2019, International Journal of Non-Linear Mechanics.

[3]  A. Gloria,et al.  Multiscale functional inequalities in probability: Constructive approach , 2017 .

[4]  S. Armstrong,et al.  Quantitative Stochastic Homogenization and Large-Scale Regularity , 2017, Grundlehren der mathematischen Wissenschaften.

[5]  A. Gloria,et al.  Analyticity of Homogenized Coefficients Under Bernoulli Perturbations and the Clausius–Mossotti Formulas , 2015, 1502.03303.

[6]  F. Otto,et al.  A Regularity Theory for Random Elliptic Operators , 2014, Milan Journal of Mathematics.

[7]  Felix Otto,et al.  Quantitative results on the corrector equation in stochastic homogenization , 2014, 1409.0801.

[8]  Z. Ounaies,et al.  Extreme enhancement and reduction of the dielectric response of polymer nanoparticulate composites via interphasial charges , 2014 .

[9]  Hakobyan Yeranuhi,et al.  Random Heterogeneous Materials , 2008 .

[10]  Gerhard M. Sessler,et al.  DC-biased ferroelectrets with large piezoelectric d33-coefficients , 2008 .

[11]  S. Torquato,et al.  Random Heterogeneous Materials: Microstructure and Macroscopic Properties , 2005 .

[12]  Qiming Zhang,et al.  Colossal dielectric and electromechanical responses in self-assembled polymeric nanocomposites , 2005 .

[13]  J. Fothergill,et al.  Internal charge behaviour of nanocomposites , 2004 .

[14]  G. Sessler,et al.  Ferroelectrets: Soft Electroactive Foams for Transducers , 2004 .

[15]  Louis Nirenberg,et al.  Estimates for elliptic systems from composite material , 2003 .

[16]  M. Vogelius,et al.  Gradient Estimates for Solutions to Divergence Form Elliptic Equations with Discontinuous Coefficients , 2000 .

[17]  A. Mccarthy Development , 1996, Current Opinion in Neurobiology.

[18]  Marco Avellaneda,et al.  Lp bounds on singular integrals in homogenization , 1991 .

[19]  M. Avellaneda,et al.  Compactness methods in the theory of homogenization , 1987 .

[20]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[21]  J. D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[22]  Victor Lefèvre,et al.  Homogenization of Elastic Dielectric Composites with Rapidly Oscillating Passive and Active Source Terms , 2017, SIAM J. Appl. Math..

[23]  K. Bhattacharya,et al.  Dielectric elastomer composites , 2012 .

[24]  R. Ogden,et al.  Nonlinear electroelasticity , 2005 .

[25]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[26]  V. Zhikov,et al.  Homogenization of Differential Operators and Integral Functionals , 1994 .

[27]  F. Murat,et al.  Compacité par compensation , 1978 .

[28]  P. Curie,et al.  Développement par compression de l'électricité polaire dans les cristaux hémièdres à faces inclinées , 1880 .

[29]  R. Clausius,et al.  Die mechanische Behandlung der Electricität , 1879 .

[30]  J. Maxwell A Treatise on Electricity and Magnetism , 1873, Nature.