Scaling laws for van der Waals interactions in nanostructured materials

Van der Waals interactions have a fundamental role in biology, physics and chemistry, in particular in the self-assembly and the ensuing function of nanostructured materials. Here we utilize an efficient microscopic method to demonstrate that van der Waals interactions in nanomaterials act at distances greater than typically assumed, and can be characterized by different scaling laws depending on the dimensionality and size of the system. Specifically, we study the behaviour of van der Waals interactions in single-layer and multilayer graphene, fullerenes of varying size, single-wall carbon nanotubes and graphene nanoribbons. As a function of nanostructure size, the van der Waals coefficients follow unusual trends for all of the considered systems, and deviate significantly from the conventionally employed pairwise-additive picture. We propose that the peculiar van der Waals interactions in nanostructured materials could be exploited to control their self-assembly.

[1]  Edward Teller,et al.  Interaction of the van der Waals Type Between Three Atoms , 1943 .

[2]  W. Bade Drude‐Model Calculation of Dispersion Forces. I. General Theory , 1957 .

[3]  W. Bade Drude‐Model Calculation of Dispersion Forces. III. The Fourth‐Order Contribution , 1958 .

[4]  R. Zwanzig Two Assumptions in the Theory of Attractive Forces between Long Saturated Chains , 1963 .

[5]  B. U. Felderhof On the propagation and scattering of light in fluids , 1974 .

[6]  W. Gelbart,et al.  Collisional polarizability anisotropies of the noble gases , 1975 .

[7]  F. L. Hirshfeld Bonded-atom fragments for describing molecular charge densities , 1977 .

[8]  B. Thole Molecular polarizabilities calculated with a modified dipole interaction , 1981 .

[9]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[10]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .

[11]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[12]  William J. Meath,et al.  Dipole oscillator strength properties and dispersion energies for acetylene and benzene , 1992 .

[13]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[14]  P. Dugourd,et al.  Direct measurement of the electric polarizability of isolated C60 molecules , 1999 .

[15]  Hendrik Ulbricht,et al.  Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons , 2004 .

[16]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[17]  L. W. Bruch Evaluation of the van der Waals force for atomic force microscopy , 2005 .

[18]  Patrick Norman,et al.  Complex polarization propagator method for calculation of dispersion coefficients of extended pi-conjugated systems: the C6 coefficients of polyacenes and C60. , 2005, The Journal of chemical physics.

[19]  V. Adrian Parsegian,et al.  Van Der Waals Forces: A Handbook for Biologists, Chemists, Engineers, and Physicists , 2005 .

[20]  Van der Waals forces , 2005 .

[21]  Asymptotics of the dispersion interaction: analytic benchmarks for van der Waals energy functionals. , 2005, Physical review letters.

[22]  A. Donchev,et al.  Many-body effects of dispersion interaction. , 2006, The Journal of chemical physics.

[23]  D. ben-Avraham Van der Waals Forces: A Handbook for Biologists, Chemists, Engineers, and Physicists , 2006 .

[24]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[25]  A. Mayer Formulation in terms of normalized propagators of a charge-dipole model enabling the calculation of the polarization properties of fullerenes and carbon nanotubes , 2007 .

[26]  N. Peres,et al.  Fine Structure Constant Defines Visual Transparency of Graphene , 2008, Science.

[27]  A. Tkatchenko,et al.  Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. , 2009, Physical review letters.

[28]  G. Galli,et al.  Nature and strength of interlayer binding in graphite. , 2009, Physical review letters.

[29]  M. W. Cole,et al.  Nanoscale van der Waals interactions , 2009 .

[30]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[31]  Matthias Scheffler,et al.  Ab initio molecular simulations with numeric atom-centered orbitals , 2009, Comput. Phys. Commun..

[32]  A. Alavi,et al.  Dispersion interactions between semiconducting wires , 2010, 1005.1332.

[33]  G. Rance,et al.  van der Waals interactions between nanotubes and nanoparticles for controlled assembly of composite nanostructures. , 2010, ACS nano.

[34]  J F Dobson,et al.  Cohesive properties and asymptotics of the dispersion interaction in graphite by the random phase approximation. , 2010, Physical review letters.

[35]  Samia Subrina,et al.  Dimensional crossover of thermal transport in few-layer graphene. , 2010, Nature materials.

[36]  J. Ángyán,et al.  Dispersion interaction in hydrogen-chain models. , 2011, The Journal of chemical physics.

[37]  A. Tkatchenko,et al.  Van der Waals interactions in ionic and semiconductor solids. , 2011, Physical review letters.

[38]  J. Dobson,et al.  Calculation of dispersion energies , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[39]  A. Tkatchenko,et al.  Accurate and efficient method for many-body van der Waals interactions. , 2012, Physical review letters.

[40]  J. Perdew,et al.  Van der waals coefficients for nanostructures: fullerenes defy conventional wisdom. , 2012, Physical review letters.

[41]  Q. Zheng,et al.  Interlayer binding energy of graphite: A mesoscopic determination from deformation , 2012 .

[42]  F. Müller,et al.  Is adhesion superficial? Silicon wafers as a model system to study van der Waals interactions. , 2012, Advances in colloid and interface science.

[43]  V. Adrian Parsegian,et al.  Chirality-dependent properties of carbon nanotubes: electronic structure, optical dispersion properties, Hamaker coefficients and van der Waals–London dispersion interactions , 2012, 1211.0001.

[44]  K. Müller,et al.  Fast and accurate modeling of molecular atomization energies with machine learning. , 2011, Physical review letters.

[45]  T. Bučko,et al.  Tkatchenko-Scheffler van der Waals correction method with and without self-consistent screening applied to solids , 2013 .

[46]  Patrick Norman,et al.  Non-additivity of polarizabilities and van der Waals C6 coefficients of fullerenes. , 2013, The Journal of chemical physics.