Modeling dust and soluble iron deposition to the South Atlantic Ocean

[1] The global chemical transport model GEOS-Chem, implemented with a dust-iron dissolution scheme, was used to analyze the magnitude and spatial distribution of mineral dust and soluble-iron (sol-Fe) deposition to the South Atlantic Ocean (SAO). The comparison of model results with remotely sensed data shows that GEOS-Chem can capture dust source regions in Patagonia and characterize the temporal variability of dust outflow. For a year-long model simulation, 22 Tg of mineral dust and 4 Gg of sol-Fe were deposited to the surface waters of the entire SAO region, with roughly 30% of this dust and sol-Fe predicted to be deposited to possible high nitrate low chlorophyll oceanic regions. Model-predicted dissolved iron fraction of mineral dust over the SAO was small, on average only accounting for 0.57% of total iron. Simulations suggest that the primary reason for such a small fraction of sol-Fe is the low ambient concentrations of acidic trace gases available for mixing with dust plumes. Overall, the amount of acid added to the deliquesced aerosol solution was not enough to overcome the alkalinity buffer of Patagonian dust and initiate considerable acid dissolution of mineral-iron. Sensitivity studies show that the amount of sol-Fe deposited to the SAO was largely controlled by the initial amount of sol-Fe at the source region, with limited contribution from the spatial variability of Patagonian-desert topsoil mineralogy and natural sources of acidic trace gases. Simulations suggest that Patagonian dust should have a minor effect on biological productivity in the SAO.

[1]  J. Nishioka,et al.  Size dependence of iron solubility of Asian mineral dust particles , 2009 .

[2]  N. Mahowald,et al.  Revisiting atmospheric dust export to the Southern Hemisphere ocean: Biogeochemical implications , 2008 .

[3]  D. Erickson,et al.  Atmospheric iron delivery and surface ocean biological activity in the Southern Ocean and Patagonian region , 2003 .

[4]  David J. Diner,et al.  Comparison of MISR and AERONET aerosol optical depths over desert sites , 2003 .

[5]  S. Doney,et al.  Iron supply and demand in the upper ocean , 2000 .

[6]  N. Mahowald,et al.  Combustion iron distribution and deposition , 2007 .

[7]  Daniel J. Jacob,et al.  The impact of transpacific transport of mineral dust in the United States , 2007 .

[8]  J. Ensling,et al.  Chemical characterization of iron in atmospheric aerosols , 1992 .

[9]  D. Jacob,et al.  Sulfate Formation in Sea-Salt Aerosols: Constraints from Oxygen Isotopes , 2005 .

[10]  N. Mahowald,et al.  Estimates of atmospheric-processed soluble iron from observations and a global mineral aerosol model: Biogeochemical implications , 2004 .

[11]  P. Boyd,et al.  Simulating the cloud processing of iron in Australian dust: pH and dust concentration , 2005 .

[12]  Johannes J. Feddema,et al.  Global trends in visibility: Implications for dust sources , 2007 .

[13]  G. Chenc,et al.  Iron Mobilization in Mineral Dust : Can Anthropogenic SO 2 Emissions Affect Ocean Productivity ? , 2003 .

[14]  E. Vermote,et al.  Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer , 1997 .

[15]  Zongbo Shi,et al.  Formation of iron nanoparticles and increase in iron reactivity in mineral dust during simulated cloud processing. , 2009, Environmental science & technology.

[16]  N. Mahowald,et al.  Atlantic Southern Ocean productivity: Fertilization from above or below? , 2007 .

[17]  David M. Cwiertny,et al.  Adsorption of sulfur dioxide on hematite and goethite particle surfaces. , 2007, Physical chemistry chemical physics : PCCP.

[18]  N. Mahowald,et al.  Understanding the 30‐year Barbados desert dust record , 2002 .

[19]  J. Prospero,et al.  Diel variability of soluble Fe(II) and soluble total Fe in North African dust in the trade winds at Barbados , 1997 .

[20]  Bernard Pinty,et al.  Techniques for the retrieval of aerosol properties over land and ocean using multiangle imaging , 1998, IEEE Trans. Geosci. Remote. Sens..

[21]  E. Jenne,et al.  FREE‐IRON AND ‐MANGANESE OXIDE CONTENT OF REFERENCE CLAYS , 1970 .

[22]  Christopher R. J. Kilburn,et al.  Volcanoes of the World , 1997 .

[23]  V. Grassian,et al.  Heterogeneous interactions of calcite aerosol with sulfur dioxide and sulfur dioxide-nitric acid mixtures. , 2007, Physical chemistry chemical physics : PCCP.

[24]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[25]  A. Nenes,et al.  Iron mobilization in mineral dust: Can anthropogenic SO2 emissions affect ocean productivity? , 2003 .

[26]  Yuan Gao,et al.  Air-to-sea flux of soluble iron: is it driven more by HNO 3 or SO 2 ? – an examination in the light of dust aging , 2007 .

[27]  Robert A. Duce,et al.  Link between iron and sulphur cycles suggested by detection of Fe(n) in remote marine aerosols , 1992, Nature.

[28]  E. Vermote,et al.  Second‐generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance , 2007 .

[29]  S. Bonnet,et al.  Dissolution of atmospheric iron in seawater , 2004 .

[30]  O. Torres,et al.  ENVIRONMENTAL CHARACTERIZATION OF GLOBAL SOURCES OF ATMOSPHERIC SOIL DUST IDENTIFIED WITH THE NIMBUS 7 TOTAL OZONE MAPPING SPECTROMETER (TOMS) ABSORBING AEROSOL PRODUCT , 2002 .

[31]  W. Balsam,et al.  Visible spectroscopy of aerosol particles collected on filters: iron-oxide minerals , 2002 .

[32]  B. Quéguiner,et al.  Effect of natural iron fertilization on carbon sequestration in the Southern Ocean , 2007, Nature.

[33]  B. Sulzberger,et al.  Catalytic dissoluion of iron(III)(hydr)oxides by oxalic acid in the presence of Fe(II) , 1988, Naturwissenschaften.

[34]  M. Chin,et al.  Sources and distributions of dust aerosols simulated with the GOCART model , 2001 .

[35]  P. J. Rasch,et al.  A comparison of scavenging and deposition processes in global models: results from the WCRP Cambridge Workshop of 1995 , 2000 .

[36]  T. Jickells,et al.  Atmospheric iron inputs to the oceans , 2001 .

[37]  N. Meskhidze,et al.  Acidic processing of mineral dust iron by anthropogenic compounds over the north Pacific Ocean. , 2009 .

[38]  M. Chin,et al.  Natural and transboundary pollution influences on sulfate‐nitrate‐ammonium aerosols in the United States: Implications for policy , 2004 .

[39]  S. Fitzwater,et al.  Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic , 1988, Nature.

[40]  V. Grassian,et al.  Water, sulfur dioxide and nitric acid adsorption on calcium carbonate: a transmission and ATR-FTIR study. , 2005, Physical chemistry chemical physics : PCCP.

[41]  R. M. Cornell,et al.  Photochemical Dissolution of Goethite in Acid/Oxalate Solution , 1987 .

[42]  Andrew J. Watson,et al.  A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization , 2000, Nature.

[43]  Roger Allan Cropp,et al.  Coupling between cycles of phytoplankton biomass and aerosol optical depth as derived from SeaWiFS time series in the Subantarctic Southern Ocean , 2002 .

[44]  P. Falkowski,et al.  Seasonal distributions of aeolian iron fluxes to the global ocean , 2001 .

[45]  Claire L. Parkinson,et al.  Aqua: an Earth-Observing Satellite mission to examine water and other climate variables , 2003, IEEE Trans. Geosci. Remote. Sens..

[46]  N. Mahowald,et al.  Estimation of iron solubility from observations and a global aerosol model , 2005 .

[47]  A. Orsi,et al.  On the meridional extent and fronts of the Antarctic Circumpolar Current , 1995 .

[48]  Diana Rodríguez,et al.  The uptake of SO 2 on Saharan dust: a flow tube study , 2005 .

[49]  J. J. Morgan,et al.  Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters , 1970 .

[50]  I. Fung,et al.  Modeling of mineral dust in the atmosphere: Sources, transport, and optical thickness , 1994 .

[51]  R. M. Cornell,et al.  PHOTOCHEMICAL DISSOLUTION OF GOETHITE IN ACID / OXALATE , 2006 .

[52]  R. Andres,et al.  A time‐averaged inventory of subaerial volcanic sulfur emissions , 1998 .

[53]  F. Dehairs,et al.  The distribution of Fe in the antarctic circumpolar current , 1997 .

[54]  J. Probst,et al.  The signature of river- and wind-borne materials exported from Patagonia to the southern latitudes: a view from REEs and implications for paleoclimatic interpretations , 2004 .

[55]  John C. Gille,et al.  Comparative inverse analysis of satellite (MOPITT) and aircraft (TRACE-P) observations to estimate Asian sources of carbon monoxide , 2004 .

[56]  J. Prospero,et al.  Photoreduction of iron(III) in marine mineral aerosol solutions , 1993 .

[57]  S. Taylor,et al.  The continental crust: Its composition and evolution , 1985 .

[58]  N. Mahowald,et al.  Global Iron Connections Between Desert Dust, Ocean Biogeochemistry, and Climate , 2005, Science.

[59]  David M. Cwiertny,et al.  Characterization and acid‐mobilization study of iron‐containing mineral dust source materials , 2008 .

[60]  P. Boyd,et al.  Aerosol iron deposition to the surface ocean — Modes of iron supply and biological responses , 2010 .

[61]  E. Boyle,et al.  Mesoscale Iron Enrichment Experiments 1993-2005: Synthesis and Future Directions , 2007, Science.

[62]  P. Gütlich,et al.  Speciation of iron in atmospheric aerosol samples , 1996 .

[63]  K. Desboeufs,et al.  Mineralogy as a critical factor of dust iron solubility , 2008 .

[64]  R. Duce,et al.  Chemistry of iron in marine aerosols , 1992 .

[65]  Raphael Kudela,et al.  A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean , 1996, Nature.

[66]  D. Tanré,et al.  Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances , 1997 .

[67]  Ariel F. Stein,et al.  Does dust from Patagonia reach the sub‐Antarctic Atlantic Ocean? , 2007 .

[68]  A. Nenes,et al.  Dust and pollution: A recipe for enhanced ocean fertilization? , 2005 .

[69]  E. Vermote,et al.  The MODIS Aerosol Algorithm, Products, and Validation , 2005 .

[70]  J. M. Martín,et al.  Influence of Saharan dust on the rain acidity and atmospheric input to the Mediterranean , 1986, Nature.

[71]  R. Duce,et al.  Atmospheric transport of iron and its deposition in the ocean , 1991 .

[72]  G. Zhuang,et al.  The dissolution of atmospheric iron in surface seawater of the open ocean , 1990 .

[73]  R. Larsen,et al.  Nitrogen and sulfur species in Antarctic aerosols at Mawson, Palmer Station, and Marsh (King George Island) , 1993 .

[74]  Oleg Dubovik,et al.  Global aerosol optical properties and application to Moderate Resolution Imaging Spectroradiometer aerosol retrieval over land , 2007 .

[75]  L. Horowitz,et al.  Impact of air pollution on wet deposition of mineral dust aerosols , 2004 .

[76]  Y. Balkanski,et al.  Modeling the mineralogy of atmospheric dust sources , 1999 .

[77]  Michael D. King,et al.  Deep Blue Retrievals of Asian Aerosol Properties During ACE-Asia , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[78]  P. Sedwick,et al.  Impact of anthropogenic combustion emissions on the fractional solubility of aerosol iron: Evidence from the Sargasso Sea , 2007 .

[79]  R. Siefert,et al.  Photoreduction of iron oxyhydroxides in the presence of important atmospheric organic compounds , 1993 .

[80]  K. Stahr,et al.  Deposition rates and characteristics of aeolian dust in the semi-arid and sub-humid regions of the Argentinean Pampa , 1998 .

[81]  David Newman,et al.  Spatial heterogeneity in aeolian erodibility: Uniform, topographic, geomorphic, and hydrologic hypotheses , 2003 .

[82]  M. Sumner Effect of Iron Oxides on Positive and Negative Charges in Clays and Soils , 1963 .

[83]  T. Jickells,et al.  Factors controlling the solubility of aerosol trace metals in the atmosphere and on mixing into seawater , 1995 .

[84]  T. Jickells,et al.  Solubilisation of aerosol trace metals by cloud processing: A laboratory study , 1994 .

[85]  R. Bay,et al.  Bipolar correlation of volcanism with millennial climate change. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[86]  G. Carmichael,et al.  Mineral dust is a sink for chlorine in the marine boundary layer , 2007 .

[87]  Kathleen A. Crean,et al.  Multiangle imaging spectroradiometer (MISR) global aerosol optical depth validation based on 2 years of coincident Aerosol Robotic Network (AERONET) observations : Global aerosol system , 2005 .

[88]  J. Probst,et al.  Iron and other transition metals in Patagonian riverborne and windborne materials: geochemical control and transport to the southern South Atlantic Ocean , 2003 .

[89]  V. Ramaswamy,et al.  Distribution, transport, and deposition of mineral dust in the Southern Ocean and Antarctica: Contribution of major sources , 2008 .

[90]  R. Chester,et al.  The impact of desert dust across the Mediterranean , 1996 .

[91]  Kathleen A. Crean,et al.  Regional aerosol retrieval results from MISR , 2002, IEEE Trans. Geosci. Remote. Sens..

[92]  B. Sulzberger,et al.  Light-induced dissolution of hematite in the presence of oxalate. A case study , 1991 .

[93]  Tom Simkin,et al.  Volcanoes of the World , 2011 .

[94]  Osvaldo E. Sala,et al.  The climate of Patagonia: general patterns and controls on biotic processes , 1998 .

[95]  A. Watson,et al.  Effect of iron supply on Southern Ocean CO2 uptake and implications for glacial atmospheric CO2 , 2000, Nature.

[96]  John H. Martin glacial-interglacial Co2 change : the iron hypothesis , 1990 .

[97]  J. Prospero,et al.  The solubility of ferric ion in marine mineral aerosol solutions at ambient relative humidities , 1992 .

[98]  B. Holben,et al.  Validation of MODIS aerosol optical depth retrieval over land , 2002 .

[99]  D. Jacob,et al.  Global modeling of tropospheric chemistry with assimilated meteorology : Model description and evaluation , 2001 .

[100]  James A. Smith,et al.  Isotopic constraints on the source of Argentinian loess – with implications for atmospheric circulation and the provenance of Antarctic dust during recent glacial maxima , 2003 .