Genetic diversity of a hitchhiker and prized food source in the Anthropocene: the Asian green mussel Perna viridis (Mollusca, Mytilidae)

[1]  C. Cullingham,et al.  The K = 2 conundrum , 2017, Molecular ecology.

[2]  Julieta Muñoz,et al.  Establishment of a taxonomic and molecular reference collection to support the identification of species regulated by the Western Australian Prevention List for Introduced Marine Pests , 2017 .

[3]  F. Wells If the Asian green mussel, Perna viridis (Linnaeus, 1758), poses the greatest invasive marine species threat to Australia, why has it not invaded? , 2017 .

[4]  M. Gardner,et al.  Isolation and characterization of 16 polymorphic microsatellite loci for the Asian green mussel Perna viridis (Mollusca, Mytilidae) , 2017 .

[5]  Ingolf Kühn,et al.  No saturation in the accumulation of alien species worldwide , 2017, Nature Communications.

[6]  N. P. Zamani,et al.  Tolerance to hypoxia in Asian green mussels, Perna viridis, collected from a ship hull in the non-native range in eastern Indonesia , 2017 .

[7]  Marie L. Nydam,et al.  Origin and Dispersal History of Two Colonial Ascidian Clades in the Botryllus schlosseri Species Complex , 2017, PloS one.

[8]  S. Puechmaille The program structure does not reliably recover the correct population structure when sampling is uneven: subsampling and new estimators alleviate the problem , 2016, Molecular ecology resources.

[9]  J. Patterson,et al.  Combined evidence indicates that Perna indica Kuriakose and Nair 1976 is Perna perna (Linnaeus, 1758) from the Oman region introduced into southern India more than 100 years ago , 2016, Biological Invasions.

[10]  M. Lenz,et al.  A ferry line facilitates dispersal: Asian green mussels Perna viridis (Linnaeus, 1758) detected in eastern Indonesia , 2015 .

[11]  Dan G. Bock,et al.  What we still don't know about invasion genetics , 2015, Molecular ecology.

[12]  Marnie L Campbell,et al.  A hub and spoke network model to analyse the secondary dispersal of introduced marine species in Indonesia , 2015 .

[13]  Arnaud Estoup,et al.  Complementarity of statistical treatments to reconstruct worldwide routes of invasion: the case of the Asian ladybird Harmonia axyridis , 2014, Molecular ecology.

[14]  L. Beheregaray,et al.  Can novel genetic analyses help to identify low-dispersal marine invasive species? , 2014, Ecology and evolution.

[15]  M. Snow,et al.  Development of sensitive and specific molecular tools for the efficient detection and discrimination of potentially invasive mussel species of the genus Perna. , 2013 .

[16]  Pablo V. Perepelizin,et al.  Genetic Diversity in Introduced Golden Mussel Populations Corresponds to Vector Activity , 2013, PloS one.

[17]  Z. Li,et al.  Characterization of eight novel microsatellite markers in the green-lipped mussel Perna viridis (Mytilidae). , 2013, Genetics and molecular research : GMR.

[18]  N. Bierne,et al.  Contrasting patterns of genome‐wide polymorphism in the native and invasive range of the marine mollusc Crepidula fornicata , 2013, Molecular ecology.

[19]  J. Gobin,et al.  Population genetics of introduced and native populations of the green mussel, Perna viridis: determining patterns of introduction , 2013, Biological Invasions.

[20]  J. McDonald Detection of the tropical mussel species Perna viridis in temperate Western Australia: possible association between spawning and a marine heat pulse , 2012 .

[21]  L. Herborg,et al.  Intracoastal shipping drives patterns of regional population expansion by an invasive marine invertebrate , 2012, Ecology and evolution.

[22]  J. McDonald,et al.  Marine biosecurity: the importance of awareness, support and cooperation in managing a successful incursion response. , 2012, Marine pollution bulletin.

[23]  Michael S. Johnson,et al.  Long‐term genetic monitoring reveals contrasting changes in the genetic composition of newly established populations of the intertidal snail Bembicium vittatum , 2012, Molecular ecology.

[24]  R. Hufbauer,et al.  The biology of small, introduced populations, with special reference to biological control , 2012, Evolutionary applications.

[25]  X. Turon,et al.  Tracking Invasion Histories in the Sea: Facing Complex Scenarios Using Multilocus Data , 2012, PloS one.

[26]  G. Yue,et al.  Genetic Variations in Populations from Farms and Natural Habitats of Asian Green Mussel, Perna viridis, in Singapore Inferred from Nine Microsatellite Markers , 2012 .

[27]  M. Whitlock and D do not replace FST , 2011, Molecular ecology.

[28]  H. MacIsaac,et al.  Invasion genetics of the Ciona intestinalis species complex: from regional endemism to global homogeneity , 2010, Molecular ecology.

[29]  Thuy T. Nguyen,et al.  Spatial and Temporal Genetic Variation of Green Mussel, Perna viridis in the Gulf of Thailand and Implication for Aquaculture , 2010, Marine Biotechnology.

[30]  G. Gerlach,et al.  Calculations of population differentiation based on GST and D: forget GST but not all of statistics! , 2010, Molecular ecology.

[31]  Arnaud Estoup,et al.  Reconstructing routes of invasion using genetic data: why, how and so what? , 2010, Molecular ecology.

[32]  Nicholas G. Crawford,et al.  smogd: software for the measurement of genetic diversity , 2010, Molecular ecology resources.

[33]  K. Yusoff,et al.  Genetic characterization of Perna viridis L. in peninsular Malaysia using microsatellite markers , 2009, Journal of Genetics.

[34]  J. Geller,et al.  Genetic patterns across multiple introductions of the globally invasive crab genus Carcinus , 2008, Molecular ecology.

[35]  L. Jost GST and its relatives do not measure differentiation , 2008, Molecular ecology.

[36]  Thibaut Jombart,et al.  adegenet: a R package for the multivariate analysis of genetic markers , 2008, Bioinform..

[37]  F. Rousset genepop’007: a complete re‐implementation of the genepop software for Windows and Linux , 2008, Molecular ecology resources.

[38]  Katrina M. Dlugosch,et al.  Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions , 2008, Molecular ecology.

[39]  Palle Villesen,et al.  FaBox: an online toolbox for fasta sequences , 2007 .

[40]  G. Yue,et al.  Isolation and characterization of polymorphic microsatellites from Asian green mussel (Perna viridis) , 2007 .

[41]  W. S. Arnold,et al.  RANGE AND DISPERSAL OF A TROPICAL MARINE INVADER, THE ASIAN GREEN MUSSEL, PERNA VIRIDIS, IN SUBTROPICAL WATERS OF THE SOUTHEASTERN UNITED STATES , 2007 .

[42]  J. Gardner,et al.  A molecular phylogeny of the marine mussel genus Perna (Bivalvia: Mytilidae) based on nuclear (ITS1&2) and mitochondrial (COI) DNA sequences. , 2007, Molecular phylogenetics and evolution.

[43]  H. Jenner,et al.  Greening of the coasts: a review of the Perna viridis success story , 2006, Aquatic Ecology.

[44]  Guha Dharmarajan,et al.  Relative performance of Bayesian clustering software for inferring population substructure and individual assignment at low levels of population differentiation , 2006, Conservation Genetics.

[45]  G. Inglis,et al.  Sensitivity and cost considerations for the detection and eradication of marine pests in ports. , 2005, Marine pollution bulletin.

[46]  G. Evanno,et al.  Detecting the number of clusters of individuals using the software structure: a simulation study , 2005, Molecular ecology.

[47]  Stephanie Manel,et al.  Assignment methods: matching biological questions with appropriate techniques. , 2005, Trends in ecology & evolution.

[48]  C. Oosterhout,et al.  Micro-Checker: Software for identifying and correcting genotyping errors in microsatellite data , 2004 .

[49]  I. Ueda,et al.  Annual reproductive cycle of the green mussel Perna viridis (L.) at Enoshima Island, Sagami Bay, Japan , 2004 .

[50]  M. Stephens,et al.  Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. , 2003, Genetics.

[51]  K. Crandall,et al.  TCS: a computer program to estimate gene genealogies , 2000, Molecular ecology.

[52]  H. Sekiguchi,et al.  Perna Mussels Introduced into Ise and Mikawa Bays, Central Japan , 2000 .

[53]  P. Donnelly,et al.  Inference of population structure using multilocus genotype data. , 2000, Genetics.

[54]  G. Luikart,et al.  Computer note. BOTTLENECK: a computer program for detecting recent reductions in the effective size using allele frequency data , 1999 .

[55]  Julio Rozas,et al.  DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis , 1999, Bioinform..

[56]  G. Luikart,et al.  Empirical Evaluation of a Test for Identifying Recently Bottlenecked Populations from Allele Frequency Data , 1998 .

[57]  Y. Fu,et al.  Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. , 1997, Genetics.

[58]  J. Goudet FSTAT (Version 1.2): A Computer Program to Calculate F-Statistics , 1995 .

[59]  François Rousset,et al.  GENEPOP (version 1.2): population genetic software for exact tests and ecumenicism , 1995 .

[60]  Stephen T. Sherry,et al.  The Genetic Structure of Ancient Human Populations , 1993, Current Anthropology.

[61]  C. Sing,et al.  A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. , 1992, Genetics.

[62]  L. Koh,et al.  Ecology of marine fouling organisms at Eastern Johore Strait. , 1991 .

[63]  F. Tajima Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. , 1989, Genetics.

[64]  W. Rice ANALYZING TABLES OF STATISTICAL TESTS , 1989, Evolution; international journal of organic evolution.

[65]  P. Fuerst,et al.  Population bottlenecks and nonequilibrium models in population genetics. II. Number of alleles in a small population that was formed by a recent bottleneck. , 1985, Genetics.

[66]  B. Weir,et al.  ESTIMATING F‐STATISTICS FOR THE ANALYSIS OF POPULATION STRUCTURE , 1984, Evolution; international journal of organic evolution.

[67]  P. Kuriakose Mussels (Mytilidae: genus Perna) of the Indian coast , 1980 .

[68]  G. Luikart,et al.  BOTTLENECK : A Computer Program for Detecting Recent Reductions in the Effective Population Size Using Allele Frequency Data , 2017 .

[69]  Juan A. Gómez,et al.  How some alien species become invasive. Some ecological, genetic and epigenetic basis for bioinvasions , 2012 .

[70]  W. S. Lakra,et al.  A molecular approach to reveal the genetic identity of parrot mussel and other sympatric mussel species distributed along the Kerala coast , 2010 .

[71]  J. Geller,et al.  Genetic perspectives on marine biological invasions. , 2010, Annual review of marine science.

[72]  W. S. Lakra,et al.  Mitochondrial DNA (Cytochrome c oxidase I) sequencing of Indian marine mussels , 2009 .

[73]  B. Holland Genetics of marine bioinvasions , 2004, Hydrobiologia.

[74]  M. Sillanpää,et al.  Bayesian analysis of genetic differentiation between populations. , 2003, Genetics.

[75]  S. Subramanian,et al.  Manual on mussel farming , 2003 .

[76]  J. Williams,et al.  Establishment of the green mussel, Perna viridis (Linnaeus 1758) (Mollusca: Mytilidae) on the West Coast of Florida , 2001 .

[77]  J. Goudet FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Updated from Goudet (1995) , 2001 .

[78]  Scott,et al.  A CLARIFICATION OF THE GENUS PERNA (MYTILIDAE) , 2000 .

[79]  J. M. Vakily The biology and culture of mussels of the genus Perna , 1989 .

[80]  K. Rengarajan,et al.  Present status of exploitation of mussel resources in India , 1980 .

[81]  T. Habe Systematics of Mollusca in Japan. , 1977 .