Artemisinin: mechanisms of action, resistance and toxicity.

Artemisinin and its derivatives are widely used throughout the world. The mechanism of action of these compounds appears to involve the heme-mediated decomposition of the endoperoxide bridge to produce carbon-centred free radicals. The involvement of heme explains why the drugs are selectively toxic to malaria parasites. The resulting carbon-centred free radicals are alkylate heme and proteins, one of which is the translationally controlled tumour protein. Clinically relevant artemisinin resistance has not been demonstrated, but it is likely to occur since artemisinin resistance has been obtained in laboratory models. At high doses, artemisinin can be neurotoxic but toxicity has not been found in clinical studies. The mechanism of neurotoxicity may be similar to the mechanism of action.

[1]  S. Meshnick,et al.  Mechanisms of Artemisinin Resistance in the Rodent Malaria Pathogen Plasmodium yoelii , 2000, Antimicrobial Agents and Chemotherapy.

[2]  T. Davis,et al.  In vitro stage-specific sensitivity of Plasmodium falciparum to quinine and artemisinin drugs. , 1996, International journal for parasitology.

[3]  Nirbhay Kumar,et al.  Stage-specific gametocytocidal effect in vitro of the antimalaria drug qinghaosu onPlasmodium falciparum , 2004, Parasitology Research.

[4]  N. Gogtay,et al.  Probable resistance to parenteral artemether in Plasmodium falciparum: case reports from Mumbai (Bombay), India , 2000, Annals of tropical medicine and parasitology.

[5]  D. Kyle,et al.  In vitro sensitivity of Plasmodium falciparum to artesunate in Thailand. , 1999, Bulletin of the World Health Organization.

[6]  S. Meshnick,et al.  Effects of antimalarials and protease inhibitors on plasmodial hemozoin production. , 1994, Molecular and biochemical parasitology.

[7]  P. Adams,et al.  Reaction between Ferriprotoporphyrin IX and the Antimalarial Endoperoxide Artesunate Gives an Intermediate Species with Enhanced Redox Catalytic Activity , 1996, The Journal of pharmacy and pharmacology.

[8]  S. Meshnick,et al.  Alkylation of human albumin by the antimalarial artemisinin. , 1993, Biochemical pharmacology.

[9]  C. Drakeley,et al.  Artesunate reduces but does not prevent posttreatment transmission of Plasmodium falciparum to Anopheles gambiae. , 2001, The Journal of infectious diseases.

[10]  S. Meshnick,et al.  Molecular modeling studies of the artemisinin (qinghaosu)-hemin interaction: docking between the antimalarial agent and its putative receptor. , 1995, Journal of molecular graphics.

[11]  Carlos R Rodrigues,et al.  Structure-activity relationships of the antimalarial agent artemisinin. 6. The development of predictive in vitro potency models using CoMFA and HQSAR methodologies. , 2002, Journal of medicinal chemistry.

[12]  R. Vishwakarma,et al.  Artemisinin mediated alteration of haemin to a δ-meso oxidation product: relevance to mechanism of action , 1998 .

[13]  Richard N. Price,et al.  Effects of artesunate-mefloquine combination on incidence of Plasmodium falciparum malaria and mefloquine resistance in western Thailand: a prospective study , 2000, The Lancet.

[14]  R. Vishwakarma,et al.  Artemisinin (qinghaosu)--a new gametocytocidal drug for malaria. , 1989, Chemotherapy.

[15]  A. Whitwood,et al.  EPR evidence for the involvement of free radicals in the iron-catalysed decomposition of qinghaosu (artemisinin) and some derivatives; antimalarial action of some polycyclic endoperoxides. , 1998, Free radical research.

[16]  N. White,et al.  Randomized Comparison of Artemether-Benflumetol and Artesunate-Mefloquine in Treatment of MultidrugResistant Falciparum Malaria , 1998, Antimicrobial Agents and Chemotherapy.

[17]  S. Meshnick,et al.  Iron-dependent free radical generation from the antimalarial agent artemisinin (qinghaosu) , 1993, Antimicrobial Agents and Chemotherapy.

[18]  K. Kirk,et al.  Pgh1 modulates sensitivity and resistance to multiple antimalarials in Plasmodium falciparum , 2000, Nature.

[19]  M. Tanner,et al.  The potential of artemether for the control of schistosomiasis. , 2001, International journal for parasitology.

[20]  J. Flippen-Anderson,et al.  Arteether, a new antimalarial drug: synthesis and antimalarial properties. , 1988, Journal of medicinal chemistry.

[21]  T. Brewer,et al.  Factors relating to neurotoxicity of artemisinin antimalarial drugs "listening to arteether". , 1998, Medecine tropicale : revue du Corps de sante colonial.

[22]  S. Kapetanaki,et al.  Ferryl–oxo heme intermediate in the antimalarial mode of action of artemisinin , 2000, FEBS letters.

[23]  J. Dame,et al.  The Plasmodium falciparum Translationally Controlled Tumor Protein Homolog and Its Reaction with the Antimalarial Drug Artemisinin* , 1998, The Journal of Biological Chemistry.

[24]  A. Senok,et al.  Thalassaemia trait, red blood cell age and oxidant stress: effects on Plasmodium falciparum growth and sensitivity to artemisinin. , 1997, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[25]  J. B. Jiang,et al.  Qinghaosu-induced changes in the morphology of Plasmodium inui. , 1985, The American journal of tropical medicine and hygiene.

[26]  J. Simpson,et al.  Artemisinin derivatives in the treatment of falciparum malaria in pregnancy. , 1998, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[27]  S. Ward,et al.  The toxicity of artemisinin and related compounds on neuronal and glial cells in culture. , 1995, Chemico-biological interactions.

[28]  M. Duraisingh,et al.  Increased sensitivity to the antimalarials mefloquine and artemisinin is conferred by mutations in the pfmdr1 gene of Plasmodium falciparum , 2000, Molecular microbiology.

[29]  F. T. Ter Kuile,et al.  Plasmodium falciparum: in vitro studies of the pharmacodynamic properties of drugs used for the treatment of severe malaria. , 1993, Experimental parasitology.

[30]  J. Jensen,et al.  Stage specific actions of antimalarial drugs on Plasmodium falciparum in culture. , 1989, The American journal of tropical medicine and hygiene.

[31]  G. Schmuck,et al.  Neurotoxic Mode of Action of Artemisinin , 2002, Antimicrobial Agents and Chemotherapy.

[32]  B. Halliwell,et al.  Free radicals in biology and medicine , 1985 .

[33]  S. Meshnick,et al.  The Plasmodium falciparum translationally controlled tumor protein: subcellular localization and calcium binding. , 1999, European journal of cell biology.

[34]  R. Price,et al.  Adverse effects in patients with acute falciparum malaria treated with artemisinin derivatives. , 1999, The American journal of tropical medicine and hygiene.

[35]  K. Silamut,et al.  Two patients with falciparum malaria and poor in vivo responses to artesunate. , 1998, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[36]  P. Olliaro,et al.  Artemisinin derivatives for treating severe malaria. , 1998, The Cochrane database of systematic reviews.

[37]  S. Meshnick,et al.  Reaction of antimalarial endoperoxides with specific parasite proteins , 1994, Antimicrobial Agents and Chemotherapy.

[38]  J. Inselburg Induction and isolation of artemisinine-resistant mutants of Plasmodium falciparum. , 1985, The American journal of tropical medicine and hygiene.

[39]  L. Weiss,et al.  Atovaquone in the treatment of Babesia microti infections in hamsters. , 1996, The American journal of tropical medicine and hygiene.

[40]  P. Rosenthal,et al.  Hemoglobin catabolism and iron utilization by malaria parasites. , 1996, Molecular and biochemical parasitology.

[41]  M. Nosten-Bertrand,et al.  Studies of the neurotoxicity of oral artemisinin derivatives in mice. , 2000, The American journal of tropical medicine and hygiene.

[42]  B. Meunier,et al.  Characterization of the First Covalent Adduct between Artemisinin and a Heme Model , 1997 .

[43]  Y. Fu,et al.  The infectivity of gametocytes of Plasmodium falciparum from patients treated with artemisinin. , 1994, Chinese medical journal.

[44]  X. Su,et al.  Alternative mutations at position 76 of the vacuolar transmembrane protein PfCRT are associated with chloroquine resistance and unique stereospecific quinine and quinidine responses in Plasmodium falciparum. , 2002, Molecular pharmacology.

[45]  N. White,et al.  Assessment of the pharmacodynamic properties of antimalarial drugs in vivo , 1997, Antimicrobial agents and chemotherapy.

[46]  N. White,et al.  Artemether-lumefantrine for the treatment of multidrug-resistant falciparum malaria. , 2000, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[47]  N. White,et al.  Use of artemisinin derivatives for the control of malaria. , 1998, Medecine tropicale : revue du Corps de sante colonial.

[48]  S. Meshnick,et al.  Hemin-catalyzed decomposition of artemisinin (qinghaosu). , 1992, Biochemical pharmacology.

[49]  K. Bojang,et al.  A randomized controlled trial of artemether/benflumetol, a new antimalarial and pyrimethamine/sulfadoxine in the treatment of uncomplicated falciparum malaria in African children. , 1998, The American journal of tropical medicine and hygiene.

[50]  C. Newbold,et al.  The mechanisms of parasite clearance after antimalarial treatment of Plasmodium falciparum malaria. , 2000, The Journal of infectious diseases.

[51]  C. Wongsrichanalai,et al.  In vitro susceptibility of Plasmodium falciparum isolates in Vietnam to artemisinin derivatives and other antimalarials. , 1997, Acta tropica.

[52]  W. Peters,et al.  The chemotherapy of rodent malaria. LVI. Studies on the development of resistance to natural and synthetic endoperoxides. , 1999, Annals of tropical medicine and parasitology.

[53]  B. Meunier,et al.  In Vitro and In Vivo Potentiation of Artemisinin and Synthetic Endoperoxide Antimalarial Drugs by Metalloporphyrins , 2000, Antimicrobial Agents and Chemotherapy.

[54]  S. Meshnick,et al.  Immunoprecipitation of [3H]Dihydroartemisinin Translationally Controlled Tumor Protein (TCTP) Adducts from Plasmodium falciparum-Infected Erythrocytes by Using Anti-TCTP Antibodies , 2001, Antimicrobial Agents and Chemotherapy.

[55]  S. Krungkrai,et al.  The antimalarial action on Plasmodium falciparum of qinghaosu and artesunate in combination with agents which modulate oxidant stress. , 1987, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[56]  P. Olliaro,et al.  Artemisinin derivatives for treating uncomplicated malaria. , 1999, The Cochrane database of systematic reviews.

[57]  S. Meshnick,et al.  Morphologic effects of artemisinin in Plasmodium falciparum. , 1993, The American journal of tropical medicine and hygiene.

[58]  C. W. Jefford,et al.  The Decomposition of cis‐Fused Cyclopenteno‐1,2,4‐Trioxanes induced by Ferrous Salts and some oxophilic reagents , 1995 .

[59]  S. Meshnick,et al.  Alkylation of proteins by artemisinin. Effects of heme, pH, and drug structure. , 1994, Biochemical pharmacology.

[60]  S. M. Sadrzadeh,et al.  Enhancement of hemin-induced membrane damage by artemisinin. , 1994, Biochemical pharmacology.

[61]  N. White,et al.  Antimalarial drug resistance and combination chemotherapy. , 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[62]  Y. Yuthavong,et al.  Correlation of antimalarial activity of artemisinin derivatives with binding affinity with ferroprotoporphyrin IX. , 1997, Journal of medicinal chemistry.

[63]  A. Bodley,et al.  Further evidence supporting the importance of and the restrictions on a carbon-centered radical for high antimalarial activity of 1,2,4-trioxanes like artemisinin. , 1995, Journal of medicinal chemistry.

[64]  R. Haynes,et al.  Ring opening of artemisinin (qinghaosu) and dihydroartemisinin and interception of the open hydroperoxides with Formation of N-oxides — a chemical model for antimalarial mode of action , 1999 .

[65]  J. Bras In vitro susceptibility of African Plasmodium falciparum isolates to dihydroartemisinin and the risk factors for resistance to qinghaosu. , 1998 .

[66]  D. Desmaële,et al.  Structure–Activity Relationships of Synthetic Tricyclic Trioxanes Related to Artemisinin: The Unexpected Alkylative Property of a 3-(Methoxymethyl) Analog , 1999 .

[67]  D. Warhurst,et al.  The chemotherapy of rodent malaria. XLIV. Studies on the mode of action of CM 6606, an indolo (3,2-c) quinoline N-oxide. , 1989, Annals of tropical medicine and parasitology.

[68]  M. Bockarie,et al.  Apparent drug failure following artesunate treatment of Plasmodium falciparum malaria in Freetown, Sierra Leone: four case reports. , 2001, Annals of tropical medicine and parasitology.

[69]  Mitchell A. Avery,et al.  Comparison of 3D quantitative structure-activity relationship methods: Analysis of the in vitro antimalarial activity of 154 artemisinin analogues by hypothetical active-site lattice and comparative molecular field analysis , 1998, J. Comput. Aided Mol. Des..

[70]  D. Warhurst,et al.  The chemotherapy of rodent malaria, XL. The action of artemisinin and related sesquiterpenes. , 1986, Annals of tropical medicine and parasitology.

[71]  S. Krishna,et al.  The pfmdr1 Gene Is Associated with a Multidrug-Resistant Phenotype in Plasmodium falciparumfrom the Western Border of Thailand , 1999, Antimicrobial Agents and Chemotherapy.

[72]  S. Meshnick,et al.  Artemisinin neurotoxicity: neuropathology in rats and mechanistic studies in vitro. , 1997, The American journal of tropical medicine and hygiene.

[73]  D. Warhurst,et al.  The chemotherapy of rodent malaria, XXXIX. Ultrastructural changes following treatment with artemisinine of Plasmodium berghei infection in mice, with observations of the localization of [3H]-dihydroartemisinine in P. falciparum in vitro. , 1985, Annals of tropical medicine and parasitology.

[74]  S. Meshnick,et al.  Qinghaosu-mediated oxidation in normal and abnormal erythrocytes. , 1989, The Journal of laboratory and clinical medicine.

[75]  P. Berman,et al.  Artemisinin enhances heme-catalysed oxidation of lipid membranes. , 1997, Free radical biology & medicine.

[76]  S. Meshnick,et al.  Artemisinin (qinghaosu): the role of intracellular hemin in its mechanism of antimalarial action. , 1991, Molecular and biochemical parasitology.

[77]  O. Levander,et al.  Qinghaosu, dietary vitamin E, selenium, and cod-liver oil: effect on the susceptibility of mice to the malarial parasite Plasmodium yoelii. , 1989, The American journal of clinical nutrition.

[78]  L. Gerena,et al.  Mechanism-based design, synthesis, and in vitro antimalarial testing of new 4-methylated trioxanes structurally related to artemisinin: the importance of a carbon-centered radical for antimalarial activity. , 1994, Journal of medicinal chemistry.

[79]  B. Meunier,et al.  Alkylating capacity and reaction products of antimalarial trioxanes after activation by a heme model. , 2002, The Journal of organic chemistry.

[80]  R. Price,et al.  Effects of artemisinin derivatives on malaria transmissibility , 1996, The Lancet.

[81]  Virander S. Chauhan,et al.  Artemisinin, an Endoperoxide Antimalarial, Disrupts the Hemoglobin Catabolism and Heme Detoxification Systems in Malarial Parasite* , 1999, The Journal of Biological Chemistry.

[82]  S. Meshnick,et al.  Activated oxygen mediates the antimalarial activity of qinghaosu. , 1989, Progress in clinical and biological research.

[83]  R. Haynes,et al.  The behaviour of qinghaosu (artemisinin) in the presence of heme iron(II) and (III) , 1996 .

[84]  M. Nosten-Bertrand,et al.  Assessment of the neurotoxicity of parenteral artemisinin derivatives in mice. , 1998, The American journal of tropical medicine and hygiene.

[85]  L. G. Miller,et al.  Ataxia and slurred speech after artesunate treatment for falciparum malaria. , 1997, The New England journal of medicine.

[86]  A. Dayan Neurotoxicity and artemisinin compounds do the observations in animals justify limitation of clinical use? , 1998, Medecine tropicale : revue du Corps de sante colonial.

[87]  S. Meshnick,et al.  The interaction of artemisinin with malarial hemozoin. , 1994, Molecular and biochemical parasitology.