Uncertainty Aversion and Equilibrium Existence in Games with Incomplete Information

We consider games with incomplete information a la Harsanyi, where the payoff of a player depends on an unknown state of nature as well as on the profile of chosen actions. As opposed to the standard model, players' preferences over state--contingent utility vectors are represented by arbitrary functionals. The definitions of Nash and Bayes equilibria naturally extend to this generalized setting. We characterize equilibrium existence in terms of the preferences of the participating players. It turns out that, given continuity and monotonicity of the preferences, equilibrium exists in every game if and only if all players are averse to uncertainty (i.e., all the functionals are quasi--concave). We further show that if the functionals are either homogeneous or translation invariant then equilibrium existence is equivalent to concavity of the functionals.

[1]  Massimo Marinacci,et al.  Ambiguity Made Precise: A Comparative Foundation , 1998, J. Econ. Theory.

[2]  Andreu Mas-Colell,et al.  The Recoverability of Consumers' Preferences from Market Demand Behavior , 1977 .

[3]  Sophie Bade,et al.  Ambiguous Act Equilibria , 2010, Games Econ. Behav..

[4]  David S. Ahn Hierarchies of ambiguous beliefs , 2007, J. Econ. Theory.

[5]  Arthur P. Dempster,et al.  Upper and Lower Probabilities Induced by a Multivalued Mapping , 1967, Classic Works of the Dempster-Shafer Theory of Belief Functions.

[6]  W. Sharkey,et al.  Cooperative games with large cores , 1982 .

[7]  I. Gilboa,et al.  Maxmin Expected Utility with Non-Unique Prior , 1989 .

[8]  Chris Shannon,et al.  Subjective Beliefs and Ex Ante Trade , 2008 .

[9]  Atsushi Kajii,et al.  Agreeable bets with multiple priors , 2006, J. Econ. Theory.

[10]  Kin Chung Lo,et al.  Correlated Nash equilibrium , 2009, J. Econ. Theory.

[11]  Itzhak Gilboa,et al.  Updating Ambiguous Beliefs , 1992, TARK.

[12]  Alexander Schied,et al.  Convex measures of risk and trading constraints , 2002, Finance Stochastics.

[13]  Subir Bose,et al.  Optimal Auctions with Ambiguity , 2004 .

[14]  Sujoy Mukerji,et al.  An overview of economic applications of David Schmeidler's models of decision making under uncertainty , 2004 .

[15]  John C. Harsanyi,et al.  Games with Incomplete Information Played by "Bayesian" Players, I-III: Part I. The Basic Model& , 2004, Manag. Sci..

[16]  Robert J. Weber,et al.  Distributional Strategies for Games with Incomplete Information , 1985, Math. Oper. Res..

[17]  Kin Chung Lo,et al.  Sealed bid auctions with uncertainty averse bidders , 1998 .

[18]  A. Rustichini,et al.  Ambiguity Aversion, Robustness, and the Variational Representation of Preferences , 2006 .

[19]  R. Aumann Correlated Equilibrium as an Expression of Bayesian Rationality Author ( s ) , 1987 .

[20]  Ahti Salo,et al.  Ambiguity aversion in first-price sealed-bid auctions , 1995 .

[21]  Alfredo Di Tillio,et al.  Subjective Expected Utility in Games , 2009 .

[22]  Sophie Bade,et al.  Electoral Competition with Uncertainty Averse Parties , 2010, Games Econ. Behav..

[23]  Refractor Uncertainty , 2001, The Lancet.

[24]  Ehud Lehrer,et al.  Extendable Cooperative Games , 2007 .

[25]  P. Wakker,et al.  Dynamic Choice and NonExpected Utility , 1998 .

[26]  Kin Chung Lo,et al.  Equilibrium in Beliefs under Uncertainty , 1996 .

[27]  D. Ellsberg Decision, probability, and utility: Risk, ambiguity, and the Savage axioms , 1961 .

[28]  T. Rader,et al.  Theory of Microeconomics , 1972 .

[29]  D. Schmeidler Subjective Probability and Expected Utility without Additivity , 1989 .

[30]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[31]  Philippe Artzner,et al.  Coherent Measures of Risk , 1999 .

[32]  Zvi Safra,et al.  Existence and dynamic consistency of Nash equilibrium with non-expected utility preferences , 1991 .

[33]  Larry G. Epstein,et al.  Dynamically Consistent Beliefs Must Be Bayesian , 1993 .

[34]  I. Gilboa,et al.  Sharing beliefs: between agreeing and disagreeing , 2000 .

[35]  Ehud Lehrer,et al.  The concave integral over large spaces , 2008, Fuzzy Sets Syst..

[36]  J. Harsanyi Games with Incomplete Information Played by “Bayesian” Players Part II. Bayesian Equilibrium Points , 1968 .

[37]  F. Delbaen Coherent Risk Measures on General Probability Spaces , 2002 .

[38]  Massimo Marinacci,et al.  Ambiguous Games , 2000, Games Econ. Behav..

[39]  Ronald Fagin,et al.  A new approach to updating beliefs , 1990, UAI.

[40]  Larry G. Epstein A definition of uncertainty aversion , 1999 .

[41]  Atsushi Kajii,et al.  Incomplete Information Games with Multiple Priors , 2005 .

[42]  Massimo Marinacci,et al.  Uncertainty averse preferences , 2011, J. Econ. Theory.

[43]  Tan Wang,et al.  Conditional preferences and updating , 2003, J. Econ. Theory.

[44]  Atsushi Kajii,et al.  Interim efficient allocations under uncertainty , 2009, J. Econ. Theory.

[45]  Larry G. Epstein,et al.  "Beliefs about Beliefs" without Probabilities , 1996 .

[46]  Martin E. P. Seligman,et al.  Optimism and Pessimism , 2008 .

[47]  Peter Klibanoff,et al.  Updating Ambiguity Averse Preferences , 2009 .

[48]  Sophie Bade,et al.  Electoral Competition with Uncertainty Averse Parties , 2010 .

[49]  Ehud Lehrer,et al.  Partially-Specified Probabilities: Decisions and Games , 2006 .

[50]  Ehud Lehrer,et al.  A new integral for capacities , 2005 .

[51]  V. Crawford Equilibrium without independence , 1990 .

[52]  Peter Klibanofi,et al.  Uncertainty, Decision, and Normal Form Games , 1996 .

[53]  David Kelsey,et al.  Non-Additive Beliefs and Strategic Equilibria , 2000, Games Econ. Behav..

[54]  Sérgio Ribeiro da Costa Werlang,et al.  Nash equilibrium under knightian uncertainty: breaking down backward induction (extensively revised version) , 1993 .

[55]  D. Samet Common Priors and Separation of Convex Sets , 1998 .

[56]  R. Shepherd Theory of cost and production functions , 1970 .