Universal strain–temperature dependence of dislocation structures at the nanoscale

[1]  M. Sauzay,et al.  Scaling laws for dislocation microstructures in monotonic and cyclic deformation of fcc metals , 2011 .

[2]  R. Shneck,et al.  Universal strain–temperature dependence of dislocation structure evolution in face-centered-cubic metals , 2011 .

[3]  D. Caillard,et al.  Thermally Activated Mechanisms in Crystal Plasticity , 2011 .

[4]  T. Kruml,et al.  About the activation volume for cross-slip in Cu at high stresses , 2011 .

[5]  J. Langer,et al.  Thermodynamic theory of dislocation-mediated plasticity , 2009, 0908.3913.

[6]  R. Shneck,et al.  Microstructure evolution in deformed copper , 2007 .

[7]  R. Shneck,et al.  Microstructure Evolution in Deformed Copper and Nickel , 2006 .

[8]  G. Makov,et al.  Cross-slip and annihilation of screw dislocations in Cu: a molecular dynamics study , 2005 .

[9]  L. Murr,et al.  Observations of common microstructural issues associated with dynamic deformation phenomena: Twins, microbands, grain size effects, shear bands, and dynamic recrystallization , 2004 .

[10]  Y. Ashkenazy,et al.  Dynamic properties of screw dislocations in Cu: A molecular dynamics study , 2003 .

[11]  U. F. Kocks,et al.  Physics and phenomenology of strain hardening: the FCC case , 2003 .

[12]  A. Argon Patterning in crystal plasticity of FCC metals , 2002 .

[13]  M. Khaleel,et al.  Microstructure Characterization of Dislocation Wall Structure in Aluminum Using Transmission Electron Microscopy , 2002 .

[14]  W. Püschl,et al.  Models for dislocation cross-slip in close-packed crystal structures: a critical review , 2002 .

[15]  Tejs Vegge,et al.  Atomistic simulations of screw dislocation cross slip in copper and nickel , 2001 .

[16]  G. Vörös,et al.  On the mathematical description of the tensile stress-strain curves of polycrystalline face centered cubic metals , 1996 .

[17]  D. Kuhlmann-wilsdorf,et al.  Overview no. 96: Evolution of F.C.C. deformation structures in polyslip , 1992 .

[18]  T. Narutani,et al.  Grain-size strengthening in terms of dislocation density measured by resistivity , 1991 .

[19]  J. Martín,et al.  A study of cross-slip activation parameters in pure copper , 1988 .

[20]  C. T. Young,et al.  Dislocation substructures formed during the flow stress recovery of high purity aluminum , 1986 .

[21]  D. Caillard,et al.  Microstructure of aluminium during creep at intermediate temperature—I. dislocation networks after creep , 1982 .

[22]  O. Sherby,et al.  The stress and temperature dependence of steady-state flow at intermediate temperatures for pure polycrystalline aluminum , 1980 .

[23]  J. E. Bailey,et al.  The dislocation distribution, flow stress, and stored energy in cold-worked polycrystalline silver , 1960 .