Elasticity Solutions to Nonbuckling Serpentine Ribbons

Nanshu Lu Center for Mechanics of Solids, Structures, and Materials, Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, 210 E 24th Street, Austin, TX 78712; Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton St., Austin, TX 78712; Texas Materials Institute, The University of Texas at Austin, 204 E. Dean Keeton St., Austin, TX 78712 e-mail: nanshulu@utexas.edu Elasticity Solutions to Nonbuckling Serpentine Ribbons

[1]  J. Kuo,et al.  Bioresorbable Silicon Electronic Sensors for the Brain. , 2016, Neurosurgery.

[2]  Fan Zhang,et al.  A finite deformation model of planar serpentine interconnects for stretchable electronics. , 2016, International journal of solids and structures.

[3]  N. Lu,et al.  Variational formulations, instabilities and critical loadings of space curved beams , 2016 .

[4]  Itthipon Jeerapan,et al.  Highly Stretchable Fully-Printed CNT-Based Electrochemical Sensors and Biofuel Cells: Combining Intrinsic and Design-Induced Stretchability. , 2016, Nano letters.

[5]  Yao-Feng Chang,et al.  “Cut‐and‐Paste” Manufacture of Multiparametric Epidermal Sensor Systems , 2015, Advanced materials.

[6]  Sumin Yun,et al.  Bioresorbable Electronic Stent Integrated with Therapeutic Nanoparticles for Endovascular Diseases. , 2015, ACS nano.

[7]  Shixuan Yang,et al.  Indium Tin Oxide (ITO) serpentine ribbons on soft substrates stretched beyond 100 , 2015 .

[8]  Sheng Xu,et al.  A hierarchical computational model for stretchable interconnects with fractal-inspired designs , 2014 .

[9]  Moongee Cho,et al.  Fabric-based stretchable electronics with mechanically optimized designs and prestrained composite substrates , 2014 .

[10]  N. Lu,et al.  Stretchability of indium tin oxide (ITO) serpentine thin films supported by Kapton substrates , 2014, International Journal of Fracture.

[11]  N. Lu,et al.  Stretchability and compliance of freestanding serpentine-shaped ribbons , 2014 .

[12]  Woosik Lee,et al.  Fractal design concepts for stretchable electronics , 2014, Nature Communications.

[13]  Huanyu Cheng,et al.  Mechanics of ultra-stretchable self-similar serpentine interconnects , 2013 .

[14]  Benjamin C. K. Tee,et al.  25th Anniversary Article: The Evolution of Electronic Skin (E‐Skin): A Brief History, Design Considerations, and Recent Progress , 2013, Advanced materials.

[15]  John A Rogers,et al.  Buckling in serpentine microstructures and applications in elastomer-supported ultra-stretchable electronics with high areal coverage. , 2013, Soft matter.

[16]  Yong Wang,et al.  Pre-patterned ZnO nanoribbons on soft substrates for stretchable energy harvesting applications , 2013 .

[17]  Viktor Malyarchuk,et al.  Digital cameras with designs inspired by the arthropod eye , 2013, Nature.

[18]  Jonathan A. Fan,et al.  Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems , 2013, Nature Communications.

[19]  John A. Rogers,et al.  Highly Sensitive Skin‐Mountable Strain Gauges Based Entirely on Elastomers , 2012 .

[20]  Z. Suo Mechanics of stretchable electronics and soft machines , 2012 .

[21]  Raeed H. Chowdhury,et al.  Epidermal Electronics , 2011, Science.

[22]  Bong Hoon Kim,et al.  Stretchable, transparent graphene interconnects for arrays of microscale inorganic light emitting diodes on rubber substrates. , 2011, Nano letters.

[23]  J. Vanfleteren,et al.  Polyimide-Enhanced Stretchable Interconnects: Design, Fabrication, and Characterization , 2011, IEEE Transactions on Electron Devices.

[24]  Benjamin C. K. Tee,et al.  Stretchable Organic Solar Cells , 2011, Advanced materials.

[25]  E. Wang,et al.  Super-elastic graphene ripples for flexible strain sensors. , 2011, ACS nano.

[26]  J. Rogers,et al.  Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy. , 2011, Nature materials.

[27]  Michael C. McAlpine,et al.  Enhanced piezoelectricity and stretchability in energy harvesting devices fabricated from buckled PZT ribbons. , 2011, Nano letters.

[28]  Jan Vanfleteren,et al.  The effects of encapsulation on deformation behavior and failure mechanisms of stretchable interconnects , 2011 .

[29]  Fu-Kuo Chang,et al.  A Spider‐Web‐Like Highly Expandable Sensor Network for Multifunctional Materials , 2010, Advanced materials.

[30]  Jan Vanfleteren,et al.  The effect of pitch on deformation behavior and the stretching-induced failure of a polymer-encapsulated stretchable circuit , 2010 .

[31]  Yonggang Huang,et al.  Materials and Mechanics for Stretchable Electronics , 2010, Science.

[32]  Jan Vanfleteren,et al.  In situ observations on deformation behavior and stretching-induced failure of fine pitch stretchable interconnect , 2009 .

[33]  Yonggang Huang,et al.  Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations , 2008, Proceedings of the National Academy of Sciences.

[34]  J. Vanfleteren,et al.  Design and Fabrication of Elastic Interconnections for Stretchable Electronic Circuits , 2007, IEEE Electron Device Letters.

[35]  J. Rogers,et al.  A Stretchable Form of Single-Crystal Silicon for High-Performance Electronics on Rubber Substrates , 2006, Science.

[36]  Z. Suo,et al.  Compliant thin film patterns of stiff materials as platforms for stretchable electronics , 2005 .

[37]  Christopher S. Chen,et al.  High‐Conductivity Elastomeric Electronics , 2004 .

[38]  Z. Suo,et al.  Stretchable gold conductors on elastomeric substrates , 2003 .

[39]  Z. Suo,et al.  Instability of a compressed elastic film on a viscous layer , 2002 .

[40]  George M. Whitesides,et al.  Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer , 1998, Nature.

[41]  T. Shield,et al.  The Buckling of an Elastic Layer Bonded to an Elastic Substrate in Plane Strain , 1994 .

[42]  John A Rogers,et al.  Elasticity of fractal inspired interconnects. , 2015, Small.