Absorption of lower hybrid waves in the scrape off layer of a diverted tokamak

The goal of the Lower Hybrid Current Drive (LHCD) system on the Alcator C-Mod tokamak [Hutchinson et al., Phys. Plasmas 1, 1511 (1994)] is to investigate current profile control under plasma conditions relevant to future tokamak experiments. Experimental observations of a LHCD “density limit” for C-Mod are presented in this paper. Bremsstrahlung emission from relativistic fast electrons in the core plasma drops suddenly above line averaged densities of 1020 m−3 (ω/ωLH∼3–4), well below the density limit previously observed on other experiments (ω/ωLH∼2). Electric currents flowing through the scrape off layer (SOL) between the inner and outer divertors increase dramatically across the same density range that the core bremsstrahlung emission drops precipitously. These experimental x-ray data are compared to both conventional modeling, which gives poor agreement with experiment above the density limit and a model including collisional absorption in the SOL, which dramatically improves agreement with experimen...

[1]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[2]  A. Hubbard,et al.  Modification of H-mode pedestal structure with lower hybrid waves on Alcator C-Mod , 2010 .

[3]  G. Calabrò,et al.  Lower hybrid current drive at ITER‐relevant high plasma densities , 2009 .

[4]  James R. Wilson,et al.  Observations of Lower Hybrid Wave Absorption in the Scrape Off Layer of a Diverted Tokamak , 2009 .

[5]  P. Bonoli,et al.  Full wave simulations of lower hybrid wave propagation in tokamaks , 2009 .

[6]  Syun'ichi Shiraiwa,et al.  Plasma wave simulation based on versatile FEM solver on Alcator C-mod , 2009 .

[7]  Orso Meneghini,et al.  Full wave simulation of lower hybrid waves in Maxwellian plasma based on the finite element method , 2009 .

[8]  O. Meneghini,et al.  Modeling of lower hybrid antennas using the ALOHA code and comparisons with Tore Supra experiments , 2009 .

[9]  Lena Delpech,et al.  Progress in the high power CW klystron development for Tore Supra , 2009 .

[10]  J. Rice,et al.  Edge radial electric field structure and its connections to H-mode confinement in Alcator C-Mod plasmas , 2009 .

[11]  V. Bobkov,et al.  Radio Frequency Power in Plasmas: Proceedings of the 18th Topical Conference , 2009 .

[12]  M. Brambilla,et al.  An assessment of full wave effects on the propagation and absorption of lower hybrid waves , 2008 .

[13]  James R. Wilson,et al.  Interaction of Lower Hybrid Waves with the Scrape Off Layer , 2008 .

[14]  I. Hutchinson,et al.  Two dimensional radiated power diagnostics on Alcator C-Mod. , 2006, The Review of scientific instruments.

[15]  R. Parker,et al.  Lower Hybrid Coupling Experiments on Alcator C‐Mod , 2007 .

[16]  M. Goniche,et al.  Thermal behavior of the LHCD launchers in Tore Supra , 2007 .

[17]  B. Lipschultz,et al.  Influence of boronization on operation with high-Z plasma facing components in Alcator C-Mod , 2007 .

[18]  T. Eich,et al.  Sheath heat transmission factors on TCV , 2007 .

[19]  S. J. Wukitch,et al.  Diagnostic Systems on Alcator C-Mod , 2007 .

[20]  C. C. Kung,et al.  Wave-Particle Studies in the Ion Cyclotron and Lower Hybrid Ranges of Frequencies in Alcator C-Mod , 2007 .

[21]  J. Freidberg,et al.  Plasma Physics and Fusion Energy , 2007 .

[22]  Yves Peysson,et al.  Hard x-ray diagnostic for lower hybrid experiments on Alcator C-Mod , 2006 .

[23]  M. Porkolab,et al.  Vertical localization of phase contrast imaging diagnostic in Alcator C-Mod , 2006 .

[24]  John E Liptac,et al.  Lower hybrid modeling and experiments on Alcator C-Mod , 2006 .

[25]  Ellen Rudolph BULLETIN of the American Physical Society , 2006 .

[26]  P. Koert,et al.  Microstrip Directional Coupler Design For A Reduced Height Waveguide , 2005 .

[27]  P. Koert,et al.  New microstrip Directional Coupler Design for Side of Waveguide in Lower Hybrid Current Drive System on Alcator C-Mod , 2005, 21st IEEE/NPS Symposium on Fusion Engineering SOFE 05.

[28]  Francesco Mirizzi,et al.  LHCD and coupling experiments with an ITER-like PAM launcher on the FTU tokamak , 2005 .

[29]  J. Huba NRL: Plasma Formulary , 2004 .

[30]  Brian Labombard,et al.  Transport-driven Scrape-Off-Layer flows and the boundary conditions imposed at the magnetic separatrix in a tokamak plasma , 2004 .

[31]  Miklos Porkolab,et al.  Design of a Compact Lower Hybrid Coupler for Alcator C-Mod , 2003 .

[32]  J. Alex,et al.  The Alcator C-Mod lower hybrid current drive experiment transmitter and power system , 2002, Proceedings of the 19th IEEE/IPSS Symposium on Fusion Engineering. 19th SOFE (Cat. No.02CH37231).

[33]  R. Aymar,et al.  The ITER design , 2002 .

[34]  A. G. Peeters,et al.  The bootstrap current and its consequences , 2000 .

[35]  D. Moreau,et al.  Estimation of heat loads on the wall structures in parasitic absorption of lower hybrid power , 2000 .

[36]  P. Stangeby,et al.  The Plasma Boundary of Magnetic Fusion Devices , 2000 .

[37]  D. Moreau,et al.  Particle-in-cell simulation of parasitic absorption of lower hybrid power in edge plasmas of tokamaks , 1999 .

[38]  F. Crisanti,et al.  High Plasma Density Lower-Hybrid Current Drive in the FTU Tokamak , 1999 .

[39]  J. Harris,et al.  Strong toroidal asymmetries in power deposition on divertor and first wall components during LHCD on TdeV and Tore Supra , 1997 .

[40]  A. J. Allen,et al.  Experimental investigation of transport phenomena in the scrape-off layer and divertor , 1997 .

[41]  V. Fuchs,et al.  Acceleration of electrons in the vicinity of a lower hybrid waveguide array , 1996 .

[42]  J. Snipes,et al.  Scaling and transport analysis of divertor conditions on the Alcator C‐Mod tokamak , 1995 .

[43]  S. Ide,et al.  Launcher heat load on high power LHCD experiments in JT-60U , 1995 .

[44]  P. T. Bonoli,et al.  First results from Alcator‐C‐MOD* , 1994 .

[45]  A. Kaye Progress in ICRH and lower hybrid launcher development , 1993 .

[46]  X. Litaudon,et al.  Lower hybrid wave coupling in TORE SUPRA through multijunction launchers , 1992 .

[47]  R. W. Harvey,et al.  The CQL3D Fokker-Planck code , 1992 .

[48]  Y. Ikeda,et al.  A new LHRF multijunction launcher with oversized waveguides for JT-60U , 1991, [Proceedings] The 14th IEEE/NPSS Symposium Fusion Engineering.

[49]  L. Giannone,et al.  Non-linear coupling of the lower hybrid grill in ASDEX , 1991 .

[50]  F. Leuterer,et al.  Coupling of the 2 × 24 waveguide grill for lower hybrid waves in ASDEX , 1991 .

[51]  D. Pozar Microwave Engineering , 1990 .

[52]  G. Bosia,et al.  The 15 MW microwave generator and launcher of the lower hybrid current drive experiment on JET , 1989, IEEE Thirteenth Symposium on Fusion Engineering.

[53]  T.K. Fowler,et al.  Nuclear fusion , 1989, IEEE Potentials.

[54]  Nathaniel J. Fisch,et al.  Theory of current-drive in plasmas , 1987 .

[55]  P. T. Bonoli,et al.  Simulation model for lower hybrid current drive , 1986 .

[56]  Rohatgi,et al.  Frequency scaling of the lower-hybrid-current-drive density limit in tokamak plasmas. , 1985, Physical review letters.

[57]  R. Slusher,et al.  Observation of parametric instabilities in the lower‐hybrid range of frequencies in the high‐density tokamak , 1985 .

[58]  S. Wolfe,et al.  Progress in tokamak research at MIT , 1985 .

[59]  P. T. Bonoli,et al.  Observation of lower-hybrid current drive at high densities in the Alcator C tokamak , 1984 .

[60]  Paul Bonoli,et al.  Linear Theory of Lower Hybrid Heating , 1984, IEEE Transactions on Plasma Science.

[61]  W. Hooke,et al.  Review of experiments on current drive in Tokamaks by means of RF waves , 1984 .

[62]  E. Ott,et al.  Accessibility and Energy Depositon of Lower-Hybrid Waves in a Tokamak with Density Fluctuations , 1981 .

[63]  R. Motley Vortex formation during radio frequency heating of plasma , 1980 .

[64]  Allen H. Boozer,et al.  Creating an asymmetric plasma resistivity with waves , 1980 .

[65]  E. Valeo,et al.  Steady-State Currents Driven by Collisionally Damped Lower-Hybrid Waves , 1980 .

[66]  M. Brambilla,et al.  Waveguide launching of lower hybrid waves , 1979 .

[67]  Charles F. F. Karney,et al.  Numerical studies of current generation by radio‐frequency traveling waves , 1979 .

[68]  Miklos Porkolab,et al.  Parametric Instabilities Due to Lower-Hybrid Radio Frequency Heating of Tokamak Plasmas , 1977 .

[69]  M. Porkolab,et al.  Observation of parametric instabilities in lower hybrid radio frequency heating of tokamaks , 1977 .

[70]  M. Brambilla,et al.  Slow-wave launching at the lower hybrid frequency using a phased waveguide array , 1976 .

[71]  F. Troyon,et al.  Lower-hybrid heating in large tokamak , 1974 .

[72]  V. E. Golant PLASMA PENETRATION NEAR THE LOWER HYBRID FREQUENCY. , 1972 .

[73]  A. Vedenov THEORY OF A WEAKLY TURBULENT PLASMA , 1967 .

[74]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[75]  Steven Weinberg,et al.  Eikonal Method in Magnetohydrodynamics , 1962 .

[76]  E. W. Herold,et al.  Controlled fusion , 1959, IRE Transactions on Electron Devices.

[77]  J. Lawson SOME CRITERIA FOR A POWER PRODUCING THERMONUCLEAR REACTOR , 1957 .

[78]  William G. Lynch,et al.  Introductory Nuclear Physics , 1955 .