On the convergence of inexact two-point Newton-like methods on Banach spaces

We present a unified convergence analysis of Inexact Newton-like methods in order to approximate a locally unique solution of a nonlinear operator equation containing a nondifferentiable term in a Banach space setting. The convergence conditions are more general and the error analysis more precise than in earlier studies such as (Argyros, 2007; C?tinas, 2005; C?tinas, 1994; Chen and Yamamoto, 1989; Dennis, 1968; Hernandez and Romero, 2005; Potra and Ptak, 1984; Rheinboldt, 1977). Special cases of our results can be used to find zeros of derivatives. Numerical examples are also provided in this study.

[1]  Ángel Alberto Magreñán,et al.  On a two-step relaxed Newton-type method , 2013, Appl. Math. Comput..

[2]  Ioannis K. Argyros,et al.  Expanding the applicability of Inexact Newton Methods under Smale's (α, γ)-theory , 2013, Appl. Math. Comput..

[3]  J. M. Gutiérrez,et al.  Geometric constructions of iterative functions to solve nonlinear equations , 2003 .

[4]  I. Argyros Computational Theory of Iterative Methods , 2014 .

[5]  Ioannis K. Argyros,et al.  Computational Theory of Iterative Methods, Volume 15 , 2007 .

[6]  Ronald L. Rardin,et al.  Optimization in operations research , 1997 .

[7]  Xiaojun Chen,et al.  Convergence domains of certain iterative methods for solving nonlinear equations , 1989 .

[8]  R. Dembo,et al.  INEXACT NEWTON METHODS , 1982 .

[9]  David G. Luenberger,et al.  Linear and Nonlinear Programming: Second Edition , 2003 .

[10]  Ioannis K. Argyros,et al.  Weaker conditions for the convergence of Newton's method , 2012, J. Complex..

[11]  Avelino Samartín,et al.  Numerical methods in nonlinear analysis of shell structures , 1993 .

[12]  Ioannis K. Argyros,et al.  A semilocal convergence analysis for directional Newton methods , 2010, Math. Comput..

[13]  Ioannis K. Argyros,et al.  Expanding the applicability of Newton's method using Smale's α-theory , 2014, J. Comput. Appl. Math..

[14]  Sergio Amat,et al.  Newton-type methods on Riemannian manifolds under Kantorovich-type conditions , 2014, Appl. Math. Comput..

[15]  Ángel Alberto Magreñán,et al.  A new tool to study real dynamics: The convergence plane , 2013, Appl. Math. Comput..

[16]  Ioannis K. Argyros,et al.  A unifying local–semilocal convergence analysis and applications for two-point Newton-like methods in Banach space , 2004 .

[17]  M. Frontini,et al.  Some variant of Newton's method with third-order convergence , 2003, Appl. Math. Comput..

[18]  Ángel Alberto Magreñán,et al.  On the semilocal convergence of Newton-Kantorovich method under center-Lipschitz conditions , 2013, Appl. Math. Comput..

[19]  M. A. Hernández Chebyshev's Approximation Algorithms and Applications , 2001 .

[20]  W. Rheinboldt An adaptive continuation process for solving systems of nonlinear equations , 1978 .

[21]  Yitian Li,et al.  On modified Newton methods with cubic convergence , 2006, Appl. Math. Comput..

[22]  M. A. Salanova,et al.  Modification of the Kantorovich assumptions for semilocal convergence of the Chebyshev method , 2000 .

[23]  Emin Kahya,et al.  A new unidimensional search method for optimization: Linear interpolation method , 2005, Appl. Math. Comput..

[24]  N. Romero,et al.  On a characterization of some Newton-like methods of R-order at least three , 2005 .

[25]  Sunethra Weerakoon,et al.  A variant of Newton's method with accelerated third-order convergence , 2000, Appl. Math. Lett..

[26]  M. A. Salanova,et al.  Resolution of quadratic equations in Banach spaces , 1996 .

[27]  P. P. Zabrejko,et al.  The majorant method in the theory of newton-kantorovich approximations and the pták error estimates , 1987 .

[28]  Ángel Alberto Magreñán,et al.  Different anomalies in a Jarratt family of iterative root-finding methods , 2014, Appl. Math. Comput..

[29]  S. Amat,et al.  Reducing Chaos and Bifurcations in Newton-Type Methods , 2013 .

[30]  On some iterative methods for solving nonlinear equations , 1994 .

[31]  Miguel Ángel Hernández,et al.  Dynamics of a new family of iterative processes for quadratic polynomials , 2010, J. Comput. Appl. Math..

[32]  Sergio Amat,et al.  Third-order methods on Riemannian manifolds under Kantorovich conditions , 2014, J. Comput. Appl. Math..

[33]  Qingbiao Wu,et al.  Convergence ball of a modified secant method for finding zero of derivatives , 2006, Appl. Math. Comput..

[34]  José M. Gutiérrez,et al.  Recurrence Relations for the Super-Halley Method , 1998 .

[35]  F. Potra,et al.  Nondiscrete induction and iterative processes , 1984 .

[36]  José M. Gutiérrez,et al.  Third-order iterative methods for operators with bounded second derivative , 1997 .

[37]  J. E. Dennis,et al.  On Newton-like methods , 1968 .

[38]  Emil Catinas,et al.  The inexact, inexact perturbed, and quasi-Newton methods are equivalent models , 2004, Math. Comput..