A perspective on nonresonant and resonant electronic response theory for time-dependent molecular properties.

The development of electronic response theory in quantum chemistry has been reviewed, starting from the early 1970's and reaching the current state-of-the-art. The general theory has been applied to the calculation of a large number of spectroscopic parameters over the years, and it has been implemented for the majority of standard electronic structure methods. Two formulations of response theory, the Ehrenfest expectation value and the quasi-energy derivative formulation, have turned into leading alternatives for the derivation of computationally tractable expressions of response functions, and they are here reviewed with an attempt to, as far as possible, leave out technical details. A set of four steps are identified as common in derivations of response functions, and the two formulations are compared along this series of steps. Particular emphasis is given to the situation when the oscillation of the weak external electromagnetic field is in resonance with a transition frequency of the system. The formation of physically sound response functions in resonance regions of the spectrum is discussed in light of the causality condition and the Kramers-Kronig relations, and it is achieved in wave function theory by means of the introduction of relaxation parameters in a manner that mimics what one sees in density matrix theory. As a working example, equations are illustrated by their application to a two-state model for para-nitroaniline including the ground and the lowest charge-transfer state in the electric dipole approximation.

[1]  K. Ruud,et al.  The ab initio calculation of molecular electric, magnetic and geometric properties. , 2011, Physical chemistry chemical physics : PCCP.

[2]  V. McKoy,et al.  HIGHER RANDOM-PHASE APPROXIMATION AS AN APPROXIMATION TO THE EQUATIONS OF MOTION. , 1970 .

[3]  L. Bartolotti Time-dependent extension of the Hohenberg-Kohn-Levy energy-density functional , 1981 .

[4]  E. Dalgaard Quadratic response functions within the time-dependent Hartree-Fock approximation , 1982 .

[5]  Martin J. Packer,et al.  A new implementation of the second‐order polarization propagator approximation (SOPPA): The excitation spectra of benzene and naphthalene , 1996 .

[6]  Christof Hättig,et al.  Implementation of RI-CC2 triplet excitation energies with an application to trans-azobenzene , 2002 .

[7]  Hideo Sekino,et al.  Frequency dependent nonlinear optical properties of molecules , 1986 .

[8]  Alexander Gaenko,et al.  Two-component relativistic density functional method for computing nonsingular complex linear response of molecules based on the zeroth order regular approximation. , 2009, The Journal of chemical physics.

[9]  B. Deb,et al.  Dynamic polarizability of many-electron systems within a time-dependent density-functional theory , 1982 .

[10]  So Hirata,et al.  Time-dependent density functional theory for radicals: An improved description of excited states with substantial double excitation character , 1999 .

[11]  Ulf Ekström,et al.  Near-edge x-ray absorption and natural circular dichroism spectra of L-alanine: a theoretical study based on the complex polarization propagator approach. , 2007, The Journal of chemical physics.

[12]  F. Aiga,et al.  Higher‐order response theory based on the quasienergy derivatives: The derivation of the frequency‐dependent polarizabilities and hyperpolarizabilities , 1993 .

[13]  Nicholas C. Handy,et al.  Improving virtual Kohn-Sham orbitals and eigenvalues: Application to excitation energies and static polarizabilities , 1998 .

[14]  H. Ågren,et al.  Resonance enhanced Raman scattering from the complex electric-dipole polarizability : A theoretical study on N-2 , 2009 .

[15]  K. Burke,et al.  A guided tour of time-dependent density functional theory , 1998 .

[16]  Patrick Norman,et al.  CUBIC RESPONSE FUNCTIONS IN THE MULTICONFIGURATION SELF-CONSISTENT FIELD APPROXIMATION , 1996 .

[17]  Julien Toulouse,et al.  On the universality of the long-/short-range separation in multiconfigurational density-functional theory. , 2007, The Journal of chemical physics.

[18]  H. Koch,et al.  Calculation of size‐intensive transition moments from the coupled cluster singles and doubles linear response function , 1994 .

[19]  Patrick Norman,et al.  Non-linear electric and magnetic properties obtained from cubic response functions in the random phase approximation , 1996 .

[20]  Trond Saue,et al.  Linear response at the 4-component relativistic level: Application to the frequency-dependent dipole polarizabilities of the coinage metal dimers , 2003 .

[21]  Kenneth Ruud,et al.  The A and B terms of magnetic circular dichroism revisited. , 2008, The journal of physical chemistry. A.

[22]  Trygve Helgaker,et al.  Hartree–Fock and Kohn–Sham atomic-orbital based time-dependent response theory , 2000 .

[23]  E. Dalgaard Time‐dependent multiconfigurational Hartree–Fock theory , 1980 .

[24]  Poul Jørgensen,et al.  On the Efficiency of Algorithms for Solving Hartree-Fock and Kohn-Sham Response Equations. , 2011, Journal of chemical theory and computation.

[25]  P. Jørgensen,et al.  Frequency-dependent second hyperpolarizabilities using coupled cluster cubic response theory , 1998 .

[26]  D. M. Bishop,et al.  Near-resonant absorption in the time-dependent self-consistent field and multiconfigurational self-consistent field approximations , 2001 .

[27]  Poul Jørgensen,et al.  Quasienergy formulation of damped response theory. , 2009, The Journal of chemical physics.

[28]  Kieron Burke,et al.  Double excitations within time-dependent density functional theory linear response. , 2004, The Journal of chemical physics.

[29]  Paweł Sałek,et al.  Density functional theory of nonlinear triplet response properties with applications to phosphorescence , 2003 .

[30]  L. Bartolotti Variation‐perturbation theory within a time‐dependent Kohn–Sham formalism: An application to the determination of multipole polarizabilities, spectral sums, and dispersion coefficients , 1984 .

[31]  W. Lipscomb,et al.  Perturbed Hartree—Fock Calculations. I. Magnetic Susceptibility and Shielding in the LiH Molecule , 1963 .

[32]  Rodney J. Bartlett,et al.  The equation-of-motion coupled-cluster method: Excitation energies of Be and CO , 1989 .

[33]  P. Jørgensen,et al.  Damped response theory description of two-photon absorption. , 2011, The Journal of chemical physics.

[34]  Kenneth Ruud,et al.  Microscopic Theory of Nonlinear Optics , 2006 .

[35]  M. Ratner,et al.  Geometric approximation to two-particle green function for ethylene , 1970 .

[36]  P. Norman,et al.  Quadratic response functions in the relativistic four-component Kohn-Sham approximation. , 2008, The Journal of chemical physics.

[37]  Jochen Schirmer,et al.  Beyond the random-phase approximation: A new approximation scheme for the polarization propagator , 1982 .

[38]  E. Gross,et al.  Density-Functional Theory for Time-Dependent Systems , 1984 .

[39]  Jeppe Olsen,et al.  Direct iterative RPA calculations. Applications to ethylene, benzene and cytosine , 1988 .

[40]  Kohn,et al.  Local density-functional theory of frequency-dependent linear response. , 1985, Physical review letters.

[41]  J. Olsen,et al.  Spin–orbit coupling constants in a multiconfiguration linear response approach , 1992 .

[42]  John D. Watts,et al.  Economical triple excitation equation-of-motion coupled-cluster methods for excitation energies , 1995 .

[43]  H. Ågren,et al.  Nonlinear propagation of strong multi-mode fields , 2003 .

[44]  A. Dreuw,et al.  Reply to ``Comment on `Critique of the foundations of time-dependent density-functional theory' '' , 2008, 0807.3303.

[45]  N. Rösch,et al.  Density- and density-matrix-based coupled Kohn–Sham methods for dynamic polarizabilities and excitation energies of molecules , 1999 .

[46]  Andreas Dreuw,et al.  Unrestricted algebraic diagrammatic construction scheme of second order for the calculation of excited states of medium-sized and large molecules. , 2009, The Journal of chemical physics.

[47]  P. Jørgensen,et al.  Determination of excitation energies and transition moments in a second order polarization propagator approach. Application to the Be atom and the CH+ molecule , 1977 .

[48]  P. Jørgensen,et al.  Frequency-dependent first hyperpolarizabilities using coupled cluster quadratic response theory , 1997 .

[49]  N. H. Beebe,et al.  Self‐consistent time‐dependent Hartree–Fock calculations of dynamic polarizabilities, dispersion forces, and nuclear spin–spin coupling constants for the H2 and HF molecules , 1975 .

[50]  J Schirmer,et al.  Intermediate state representation approach to physical properties of electronically excited molecules. , 2004, The Journal of chemical physics.

[51]  P. Jørgensen,et al.  Efficient elimination of response parameters in molecular property calculations for variational and nonvariational energies. , 2008, The Journal of chemical physics.

[52]  Chengbu Liu,et al.  Time-dependent four-component relativistic density functional theory for excitation energies. , 2004, The Journal of chemical physics.

[53]  Paweł Sałek,et al.  Restricted density functional theory of linear time-dependent properties in open-shell molecules , 2003 .

[54]  Jochen Schirmer,et al.  An efficient polarization propagator approach to valence electron excitation spectra , 1995 .

[55]  Hideo Sekino,et al.  A linear response, coupled‐cluster theory for excitation energy , 1984 .

[56]  R. Ahlrichs,et al.  Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory , 1996 .

[57]  Paweł Sałek,et al.  Dalton, a molecular electronic structure program , 2005 .

[58]  Jeppe Olsen,et al.  Linear response calculations for large scale multiconfiguration self‐consistent field wave functions , 1988 .

[59]  Paweł Sałek,et al.  Cubic response functions in time-dependent density functional theory. , 2005, The Journal of chemical physics.

[60]  Dennis R. Salahub,et al.  Dynamic polarizabilities and excitation spectra from a molecular implementation of time‐dependent density‐functional response theory: N2 as a case study , 1996 .

[61]  J. Olsen,et al.  Generalizations of the multiconfigurational time-dependent Hartree–Fock approach , 1984 .

[62]  Kieron Burke,et al.  Memory in time-dependent density functional theory. , 2002, Physical review letters.

[63]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[64]  Jeffrey A. Nichols,et al.  Direct atomic‐orbital‐based time‐dependent Hartree–Fock calculations of frequency‐dependent polarizabilities , 1992 .

[65]  Jörg Kussmann,et al.  Linear-scaling method for calculating nuclear magnetic resonance chemical shifts using gauge-including atomic orbitals within Hartree-Fock and density-functional theory. , 2007, The Journal of chemical physics.

[66]  G. Scuseria,et al.  Linear-scaling calculation of static and dynamic polarizabilities in Hartree-Fock and density functional theory for periodic systems. , 2006, The Journal of chemical physics.

[67]  J. Olsen,et al.  Linear and nonlinear response functions for an exact state and for an MCSCF state , 1985 .

[68]  Trygve Helgaker,et al.  Nuclear shielding constants by density functional theory with gauge including atomic orbitals , 2000 .

[69]  Paweł Sałek,et al.  Linear-scaling implementation of molecular response theory in self-consistent field electronic-structure theory. , 2007, The Journal of chemical physics.

[70]  Kieron Burke,et al.  Time-dependent density functional theory: past, present, and future. , 2005, The Journal of chemical physics.

[71]  Julia E. Rice,et al.  The calculation of frequency‐dependent polarizabilities as pseudo‐energy derivatives , 1991 .

[72]  Fumihiko Aiga,et al.  Frequency‐dependent hyperpolarizabilities in the Mo/ller–Plesset perturbation theory , 1993 .

[73]  J. Sabin,et al.  Polarization propagator calculation of spectroscopic properties of molecules , 1991 .

[74]  Christof Hättig,et al.  Structure Optimizations for Excited States with Correlated Second-Order Methods: CC2 and ADC(2) , 2005 .

[75]  Brian J. Orr,et al.  Perturbation theory of the non-linear optical polarization of an isolated system , 1971 .

[76]  Nakano,et al.  Numerical Liouville approach: A calculation method for nonlinear optical susceptibilities of N-state systems. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[77]  Henrik Koch,et al.  Calculation of frequency-dependent polarizabilities using coupled-cluster response theory , 1994 .

[78]  Andreas Görling,et al.  Exact exchange kernel for time‐dependent density‐functional theory , 1998 .

[79]  Jens Oddershede,et al.  A coupled cluster polarization propagator method applied to CH , 1986 .

[80]  Ulf Ekström,et al.  X-ray absorption spectra from the resonant-convergent first-order polarization propagator approach , 2006 .

[81]  Trygve Helgaker,et al.  Excitation energies from the coupled cluster singles and doubles linear response function (CCSDLR). Applications to Be, CH+, CO, and H2O , 1990 .

[82]  Wenli Zou,et al.  Time-dependent four-component relativistic density-functional theory for excitation energies. II. The exchange-correlation kernel. , 2005, The Journal of chemical physics.

[83]  Poul Jo,et al.  Optimization of orbitals for multiconfigurational reference states , 1978 .

[84]  John F. Stanton,et al.  Triple excitation effects in coupled-cluster calculations of frequency-dependent hyperpolarizabilities , 1998 .

[85]  M. Petersilka,et al.  Excitation energies from time-dependent density-functional theory. , 1996 .

[86]  N. Handy,et al.  The calculation of frequency‐dependent hyperpolarizabilities including electron correlation effects , 1992 .

[87]  H. Monkhorst,et al.  Some aspects of the time-dependent coupled-cluster approach to dynamic response functions , 1983 .

[88]  J. Olsen,et al.  Solution of the large matrix equations which occur in response theory , 1988 .

[89]  P. Norman,et al.  Role of noncollinear magnetization for the first-order electric-dipole hyperpolarizability at the four-component Kohn-Sham density functional theory level. , 2009, The Journal of chemical physics.

[90]  Ove Christiansen,et al.  Atomic integral driven second order polarization propagator calculations of the excitation spectra of naphthalene and anthracene , 2000 .

[91]  N. Handy,et al.  A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP) , 2004 .

[92]  Trygve Helgaker,et al.  Density-functional theory calculations of optical rotatory dispersion in the nonresonant and resonant frequency regions. , 2004, The Journal of chemical physics.

[93]  P. Norman,et al.  Two-photon absorption in the relativistic four-component Hartree-Fock approximation. , 2005, The Journal of chemical physics.

[94]  Jörg Kussmann,et al.  A density matrix-based method for the linear-scaling calculation of dynamic second- and third-order properties at the Hartree-Fock and Kohn-Sham density functional theory levels. , 2007, The Journal of chemical physics.

[95]  D. M. Bishop,et al.  Nonlinear response theory with relaxation: the first-order hyperpolarizability. , 2005, The Journal of chemical physics.

[96]  P. Jørgensen,et al.  Large scale random phase calculations for direct self-consistent field wavefunctions , 1993 .

[97]  Evert Jan Baerends,et al.  A density-functional theory study of frequency-dependent polarizabilities and Van der Waals dispersion coefficients for polyatomic molecules , 1995 .

[98]  H. Ågren,et al.  Direct atomic orbital based self‐consistent‐field calculations of nonlinear molecular properties. Application to the frequency dependent hyperpolarizability of para‐nitroaniline , 1993 .

[99]  R. Leeuwen,et al.  Causality and symmetry in time-dependent density-functional theory , 1998 .

[100]  Valéry Weber,et al.  Linear scaling density matrix perturbation theory for basis-set-dependent quantum response calculations: an orthogonal formulation. , 2007, The Journal of chemical physics.

[101]  G. Scuseria,et al.  An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules , 1998 .

[102]  Poul Jo,et al.  Self‐Consistent Polarization Propagator Calculations in the Pariser‐Parr‐Pople Model. A Modified Random Phase Method , 1972 .

[103]  T. Helgaker,et al.  Linear response at the 4-component relativistic density-functional level: application to the frequency-dependent dipole polarizability of Hg, AuH and PtH2 , 2005 .

[104]  J. Olsen,et al.  Quadratic response functions for a multiconfigurational self‐consistent field wave function , 1992 .

[105]  Kenneth Ruud,et al.  Complex polarization propagator calculations of magnetic circular dichroism spectra. , 2008, The Journal of chemical physics.

[106]  A. Dalgarno Atomic polarizabilities and shielding factors , 1962 .

[107]  P. Norman,et al.  First-order excited state properties in the four-component Hartree-Fock approximation: the excited state electric dipole moments in CsAg and CsAu. , 2007, The Journal of chemical physics.

[108]  Branislav Jansik,et al.  Calculations of static and dynamic polarizabilities of excited states by means of density functional theory. , 2004, The Journal of chemical physics.

[109]  Matt Challacombe,et al.  Density matrix perturbation theory. , 2003, Physical review letters.

[110]  K. Burke,et al.  Comment on ''Analysis of Floquet formulation of time-dependent density-functional theory'' (Chem. Phys. Lett. 433 (2006) 204) , 2007, 0704.2084.

[111]  H. Monkhorst,et al.  Calculation of properties with the coupled-cluster method , 2009 .

[112]  Patrick Norman,et al.  Linear complex polarization propagator in a four-component Kohn-Sham framework. , 2010, The Journal of chemical physics.

[113]  S. Kaneko Electrical Polarizabilities of Rare Gas Atoms by the Hartree-Fock Wave Functions , 1959 .

[114]  Time-dependent Floquet theory and absence of an adiabatic limit , 1997, cond-mat/9706182.

[115]  Christof Hättig,et al.  CC2 excitation energy calculations on large molecules using the resolution of the identity approximation , 2000 .

[116]  Patrick Norman,et al.  Polarization propagator calculations of the polarizability tensor at imaginary frequencies and long-range interactions for the noble gases and n-alkanes , 2003 .

[117]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[118]  V. McKoy,et al.  Nonempirical Calculations on Excited States: The Ethylene Molecule , 1967 .

[119]  K. Ruud,et al.  Atomic orbital-based cubic response theory for one-, two-, and four-component relativistic self-consistent field models , 2009 .

[120]  Mark E. Casida,et al.  Time-dependent density-functional theory for molecules and molecular solids , 2009 .

[121]  Yi Luo,et al.  Response theory for static and dynamic polarizabilities of excited states , 1996 .

[122]  K. Burke,et al.  Excitation energies from time-dependent density-functional theory beyond the adiabatic approximation. , 2004, The Journal of chemical physics.

[123]  K. Burke,et al.  Comment on Critique of the foundations of time-dependent density-functional theory , 2008 .

[124]  J. Autschbach,et al.  Double perturbation theory: A powerful tool in computational coordination chemistry , 2003 .

[125]  R. Bartlett,et al.  The inclusion of connected triple excitations in the equation‐of‐motion coupled‐cluster method , 1994 .

[126]  J. Olsen,et al.  Multiconfigurational quadratic response functions for singlet and triplet perturbations: The phosphorescence lifetime of formaldehyde , 1992 .

[127]  C. Hättig,et al.  Correlated frequency-dependent polarizabilities and dispersion coefficients in the time-dependent second-order Møller-Plesset approximation , 1995 .

[128]  Henrik Koch,et al.  Coupled cluster response functions , 1990 .

[129]  E. Gross,et al.  Time-dependent density functional theory. , 2004, Annual review of physical chemistry.

[130]  Kenneth Ruud,et al.  Arbitrary-Order Density Functional Response Theory from Automatic Differentiation. , 2010, Journal of chemical theory and computation.

[131]  W. Lipscomb,et al.  Perturbed Hartree—Fock Calculations. II. Further Results for Diatomic Lithium Hydride , 1964 .

[132]  M. Ratner,et al.  Self-consistent polarization propagator approximation as a modified random phase method , 1972 .

[133]  Ove Christiansen,et al.  Response functions in the CC3 iterative triple excitation model , 1995 .

[134]  J. McNamee,et al.  The Hartree Perturbation Method for Helium , 1961 .

[135]  Poul Jo,et al.  An order analysis of the particle–hole propagator , 1977 .

[136]  A. Dreuw,et al.  Critique of the foundations of time-dependent density-functional theory , 2007 .

[137]  Paweł Sałek,et al.  Density-functional theory of linear and nonlinear time-dependent molecular properties , 2002 .

[138]  L. C. Allen Hartree-Fock Equations with a Perturbing Field , 1960 .

[139]  P. Jørgensen,et al.  A multiconfigurational time-dependent hartree-fock approach , 1979 .

[140]  P. W. Langhoff,et al.  Aspects of Time-Dependent Perturbation Theory , 1972 .

[141]  P. Jørgensen,et al.  Polarization propagator methods in atomic and molecular calculations , 1984 .

[142]  Analysis of Floquet formulation of time-dependent density-functional theory , 2006, cond-mat/0611428.

[143]  Radovan Bast,et al.  Relativistic adiabatic time-dependent density functional theory using hybrid functionals and noncollinear spin magnetization , 2009 .

[144]  Kenneth Ruud,et al.  A density matrix-based quasienergy formulation of the Kohn-Sham density functional response theory using perturbation- and time-dependent basis sets. , 2008, The Journal of chemical physics.

[145]  Evert Jan Baerends,et al.  Calculating frequency-dependent hyperpolarizabilities using time-dependent density functional theory , 1998 .

[146]  Valéry Weber,et al.  Ab initio linear scaling response theory: electric polarizability by perturbed projection. , 2004, Physical review letters.

[147]  Patrick Norman,et al.  Electronic circular dichroism spectra from the complex polarization propagator. , 2007, The Journal of chemical physics.

[148]  H. Ågren,et al.  Polarization propagator for x-ray spectra. , 2006, Physical review letters.

[149]  Poul Jo,et al.  Transition moments and dynamic polarizabilities in a second order polarization propagator approach , 1980 .

[150]  Zongfu Yu,et al.  Measurement of time-dependent CP asymmetries in Bjavax.xml.bind.JAXBElement@6d610b0 → D(*)±π± decays and constraints on sin(2β + γ) , 2004 .

[151]  A. D. McLACHLAN,et al.  Time-Dependent Hartree—Fock Theory for Molecules , 1964 .

[152]  K. Burke,et al.  On the Floquet formulation of time-dependent density functional theory , 2002 .

[153]  John F. Stanton,et al.  The equation of motion coupled‐cluster method. A systematic biorthogonal approach to molecular excitation energies, transition probabilities, and excited state properties , 1993 .

[154]  Trygve Helgaker,et al.  Hartree-Fock and Kohn-Sham time-dependent response theory in a second-quantization atomic-orbital formalism suitable for linear scaling. , 2008, The Journal of chemical physics.

[155]  W. Parkinson,et al.  Quadratic response theory of frequency‐dependent first hyperpolarizability. Calculations in the dipole length and mixed‐velocity formalisms , 1991 .

[156]  Trygve Helgaker,et al.  Efficient parallel implementation of response theory: Calculations of the second hyperpolarizability of polyacenes , 1996 .

[157]  H. W. Peng Perturbation theory for the self-consistent field , 1941, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[158]  John C. Lindon,et al.  Encyclopedia of spectroscopy and spectrometry , 2000 .

[159]  L. Bartolotti Time-dependent Kohn-Sham density-functional theory , 1982 .

[160]  西田 昌平 Radiative B meson decays into Kπγ and Kππγ final states , 2003 .

[161]  Excited states from time-dependent density functional theory , 2007, cond-mat/0703590.

[162]  Á. Rubio,et al.  Time-dependent density-functional theory. , 2009, Physical chemistry chemical physics : PCCP.

[163]  Laurence D. Barron,et al.  Molecular Light Scattering and Optical Activity: Second Edition, revised and enlarged , 1983 .

[164]  Andrew Zangwill,et al.  Density-functional approach to local-field effects in finite systems: Photoabsorption in the rare gases , 1980 .

[165]  P. Dirac Note on Exchange Phenomena in the Thomas Atom , 1930, Mathematical Proceedings of the Cambridge Philosophical Society.

[166]  Olav Vahtras,et al.  Direct one‐index transformations in multiconfiguration response calculations , 1994, J. Comput. Chem..

[167]  Poul Jørgensen,et al.  Response functions from Fourier component variational perturbation theory applied to a time-averaged quasienergy , 1998 .

[168]  V. McKoy,et al.  Equations‐of‐motion method including renormalization and double‐excitation mixing , 1973 .

[169]  Y. Saad,et al.  Turbo charging time-dependent density-functional theory with Lanczos chains. , 2006, The Journal of chemical physics.

[170]  O. Christiansen,et al.  Static and frequency-dependent polarizabilities of excited singlet states using coupled cluster response theory , 1998 .

[171]  Robert van Leeuwen,et al.  KEY CONCEPTS IN TIME-DEPENDENT DENSITY-FUNCTIONAL THEORY , 2001 .

[172]  B. Deb,et al.  Schrödinger fluid dynamics of many‐electron systems in a time‐dependent density‐functional framework , 1982 .

[173]  J. G. Snijders,et al.  Implementation of time-dependent density functional response equations , 1999 .

[174]  Poul Jørgensen,et al.  The second-order approximate coupled cluster singles and doubles model CC2 , 1995 .

[175]  V. Peuckert A new approximation method for electron systems , 1978 .

[176]  S. Dancoff Non-Adiabatic Meson Theory of Nuclear Forces , 1950 .