Characterization of mechanisms of resistance against Didymella pinodes in Pisum spp.

[1]  A. Flavell,et al.  Pea (Pisum sativum L.) in the Genomic Era , 2012 .

[2]  C. Kole,et al.  Genetics, genomics and breeding of cool season grain legumes. , 2011 .

[3]  F. Krajinski,et al.  Identification of genes differentially expressed in a resistant reaction to Mycosphaerella pinodes in pea using microarray technology , 2011, BMC Genomics.

[4]  M. Kharrat,et al.  Intercropping reduces Mycosphaerella pinodes severity and delays upward progress on the pea plant. , 2010 .

[5]  B. Tivoli,et al.  Effect of pea canopy architecture on splash dispersal of Mycosphaerella pinodes conidia , 2008 .

[6]  D. Collinge,et al.  Roles of reactive oxygen species in interactions between plants and pathogens , 2008, European Journal of Plant Pathology.

[7]  D. Rubiales,et al.  Mapping of quantitative trait loci for resistance to Mycosphaerella pinodes in Pisum sativum subsp. syriacum , 2007, Molecular Breeding.

[8]  D. Rubiales,et al.  Response to Mycosphaerella pinodes in a germplasm collection of Pisum spp , 2005 .

[9]  R. Ford,et al.  Pea (Pisum sativum L.) , 2005 .

[10]  G. Timmerman-Vaughan,et al.  Validation of quantitative trait loci for Ascochyta blight resistance in pea (Pisum sativum L.), using populations from two crosses , 2004, Theoretical and Applied Genetics.

[11]  A. Moussart,et al.  Role of seed infection by the Ascochyta blight pathogen of dried pea (Mycosphaerella pinodes) in seedling emergence, early disease development and transmission of the disease to aerial plant parts , 2004, European Journal of Plant Pathology.

[12]  M. Ambrose,et al.  Current status and future strategy in breeding pea to improve resistance to biotic and abiotic stresses , 2004, Euphytica.

[13]  A. Baranger,et al.  Mapping of quantitative trait loci for partial resistance to Mycosphaerella pinodes in pea (Pisum sativum L.), at the seedling and adult plant stages , 2004, Theoretical and Applied Genetics.

[14]  S. Woods,et al.  Quantitative trait loci for lodging resistance, plant height and partial resistance to mycosphaerella blight in field pea (Pisum sativum L.) , 2003, Theoretical and Applied Genetics.

[15]  D. Inzé,et al.  Changes in hydrogen peroxide homeostasis trigger an active cell death process in tobacco. , 2003, The Plant journal : for cell and molecular biology.

[16]  G. Timmerman-Vaughan,et al.  QTL Mapping of Partial Resistance to Field Epidemics of Ascochyta Blight of Pea , 2002 .

[17]  M. C. Heath,et al.  H2O2 plays different roles in determining penetration failure in three diverse plant-fungal interactions. , 2002, The Plant journal : for cell and molecular biology.

[18]  J. Mansfield,et al.  Localization of components of the oxidative cross-linking of glycoproteins and of callose synthesis in papillae formed during the interaction between non-pathogenic strains of Xanthomonas campestris and french bean mesophyll cells , 1998 .

[19]  J. Kraft,et al.  A Search for Resistance in Peas to Mycosphaerella pinodes. , 1998, Plant disease.

[20]  J. Wroth Possible role for wild genotypes of Pisum spp. to enhance ascochyta blight resistance in pea , 1998 .

[21]  David B. Collinge,et al.  Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley—powdery mildew interaction , 1997 .

[22]  A. Allan,et al.  Two Distinct Sources of Elicited Reactive Oxygen Species in Tobacco Epidermal Cells. , 1997, The Plant cell.

[23]  R. Dixon,et al.  THE OXIDATIVE BURST IN PLANT DISEASE RESISTANCE. , 1997, Annual review of plant physiology and plant molecular biology.

[24]  Jonathan D. G. Jones,et al.  Resistance gene-dependent plant defense responses. , 1996, The Plant cell.

[25]  I. Somssich,et al.  Defense Responses of Plants to Pathogens , 1995 .

[26]  C. Lamb,et al.  Function of Oxidative Cross-Linking of Cell Wall Structural Proteins in Plant Disease Resistance. , 1994, The Plant cell.

[27]  T. Heitz,et al.  Local and systemic accumulation of pathogenesis-related proteins in tobacco plants infected with tobacco mosaic virus , 1994 .

[28]  Steven J. Knapp,et al.  Mapping quantitative trait loci , 1994 .

[29]  A. Showalter,et al.  Structure and function of plant cell wall proteins. , 1993, The Plant cell.

[30]  G. Kalloo Pea: Pisum sativum L. , 1993 .

[31]  C. Lamb,et al.  Elicitor- and wound-induced oxidative cross-linking of a proline-rich plant cell wall protein: A novel, rapid defense response , 1992, Cell.

[32]  B. Lewis,et al.  Expression of resistance to Mycosphaerella pinodes in Pisum sativum , 1992 .

[33]  F. Ebrahim-Nesbat,et al.  The development of different pathotype groups of Mycosphaerella pinocles in susceptible and partially resistant pea leaves , 1992 .

[34]  M. Parker,et al.  Infection of pea epicotyls by Mycosphaerella pinodes , 1991 .

[35]  B. Lewis,et al.  A Pathotype Classification for Mycosphaerella pinodes , 1991 .

[36]  T. M. Little,et al.  AGRICULTURAL EXPERIMENTATION: DESIGN AND ANALYSIS , 1982 .

[37]  S. Shapiro,et al.  An Analysis of Variance Test for Normality (Complete Samples) , 1965 .

[38]  L. K. Jones Bulletin: Number 547: Studies of the Nature and Control of Blight, Leaf and Pod Spot, and Footrot of Peas Caused by Species of Ascochyta , 1927 .

[39]  L. K. Jones Studies of the nature and control of blight, leaf and pod spot, and foot-rot of Peas caused by species of ASCO-chyta. , 1927 .