Free energy and structural pathways of base flipping in a DNA GCGC containing sequence.

[1]  T. D. Schneider,et al.  Strong minor groove base conservation in sequence logos implies DNA distortion or base flipping during replication and transcription initiation. , 2001, Nucleic acids research.

[2]  T. D. Schneider,et al.  The P1 phage replication protein RepA contacts an otherwise inaccessible thymine N3 proton by DNA distortion or base flipping. , 2001, Nucleic acids research.

[3]  R. Lavery,et al.  Energetic and conformational aspects of A:T base-pair opening within the DNA double helix. , 2001, Chemphyschem : a European journal of chemical physics and physical chemistry.

[4]  Alexander D. MacKerell,et al.  Re-examination of the intrinsic, dynamic and hydration properties of phosphoramidate DNA. , 2001, Nucleic acids research.

[5]  M Feig,et al.  Conformations of an adenine bulge in a DNA octamer and its influence on DNA structure from molecular dynamics simulations. , 2001, Biophysical journal.

[6]  Alexander D. MacKerell,et al.  Reevaluation of stereoelectronic contributions to the conformational properties of the phosphodiester and N3'-phosphoramidate moieties of nucleic acids. , 2001, Journal of the American Chemical Society.

[7]  S Derreumaux,et al.  Impact of CpG methylation on structure, dynamics and solvation of cAMP DNA responsive element. , 2001, Nucleic acids research.

[8]  Alexander D. MacKerell,et al.  INHIBITION OF (CYTOSINE C5)-METHYLTRANSFERASE BY OLIGONUCLEOTIDES CONTAINING FLEXIBLE (CYCLOPENTANE) AND CONFORMATIONALLY CONSTRAINED (BICYCLO[3.1.0]HEXANE) ABASIC SITES , 2001, Nucleosides, nucleotides & nucleic acids.

[9]  Alexander D. MacKerell,et al.  Computational Biochemistry and Biophysics , 2001 .

[10]  Alexander D. MacKerell,et al.  Ab initio conformational analysis of nucleic acid components: Intrinsic energetic contributions to nucleic acid structure and dynamics , 2001, Biopolymers.

[11]  Alexander D. MacKerell,et al.  Use of oligodeoxyribonucleotides with conformationally constrained abasic sugar targets to probe the mechanism of base flipping by HhaI DNA (cytosine C5)-methyltransferase , 2000 .

[12]  G. Chillemi,et al.  Structure and hydration of BamHI DNA recognition site: a molecular dynamics investigation. , 2000, Biophysical journal.

[13]  P. S. Ho,et al.  The extended and eccentric E-DNA structure induced by cytosine methylation or bromination , 2000, Nature Structural Biology.

[14]  J. Kypr,et al.  Invariant and Variable Base Stacking Geometries in B-DNA and A-DNA , 2000, Journal of biomolecular structure & dynamics.

[15]  Spontaneous base flipping in DNA and its possible role in methyltransferase binding. , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[16]  Alexander D. MacKerell,et al.  All‐atom empirical force field for nucleic acids: II. Application to molecular dynamics simulations of DNA and RNA in solution , 2000 .

[17]  Alexander D. MacKerell,et al.  All‐atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data , 2000 .

[18]  J. Tainer,et al.  DNA-bound structures and mutants reveal abasic DNA binding by APE1 DNA repair and coordination , 2000, Nature.

[19]  S. Wärmländer,et al.  Imino proton exchange in DNA catalyzed by ammonia and trimethylamine: evidence for a secondary long-lived open state of the base pair. , 2000, Biochemistry.

[20]  M. Ghomi,et al.  The peculiar role of cytosine in nucleoside conformational behaviour: Hydrogen bond donor capacity of nucleic bases , 2000 .

[21]  T. Cheatham,et al.  Molecular dynamics simulation of nucleic acids: Successes, limitations, and promise * , 2000, Biopolymers.

[22]  C. George,et al.  Synthesis of Conformationally Restricted Carbocyclic Nucleosides: The Role of the O(4′)-Atom in the Key Hydration Step of Adenosine Deaminase , 1999 .

[23]  Benoît Roux,et al.  Efficient calculation of two‐dimensional adiabatic and free energy maps: Application to the isomerization of the C13C14 and C15N16 bonds in the retinal of bacteriorhodopsin , 1999 .

[24]  Alexander D. MacKerell,et al.  Contribution of the Phosphodiester Backbone and Glycosyl Linkage Intrinsic Torsional Energetics to DNA Structure and Dynamics , 1999 .

[25]  C. Chipot,et al.  FREE ENERGY CALCULATIONS OF WATSON-CRICK BASE PAIRING IN AQUEOUS SOLUTION , 1999 .

[26]  B. Pettitt,et al.  Sodium and chlorine ions as part of the DNA solvation shell. , 1999, Biophysical journal.

[27]  Alexander D. MacKerell,et al.  Intrinsic conformational properties of deoxyribonucleosides: implicated role for cytosine in the equilibrium among the A, B, and Z forms of DNA. , 1999, Biophysical journal.

[28]  U. Dornberger,et al.  High Base Pair Opening Rates in Tracts of GC Base Pairs* , 1999, The Journal of Biological Chemistry.

[29]  J. Christman,et al.  Mechanism of inhibition of DNA (cytosine C5)-methyltransferases by oligodeoxyribonucleotides containing 5,6-dihydro-5-azacytosine. , 1999, Journal of molecular biology.

[30]  J. Tainer,et al.  DNA repair mechanisms for the recognition and removal of damaged DNA bases. , 1999, Annual review of biophysics and biomolecular structure.

[31]  R. Roberts,et al.  Structures of HhaI methyltransferase complexed with substrates containing mismatches at the target base , 1998, Nature Structural Biology.

[32]  V. Zhurkin,et al.  DNA sequence-dependent deformability deduced from protein-DNA crystal complexes. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[33]  S. Gryaznov,et al.  RNA mimetics: oligoribonucleotide N3'-->P5' phosphoramidates. , 1998, Nucleic acids research.

[34]  Alexander D. MacKerell,et al.  Conformational Properties of the Deoxyribose and Ribose Moieties of Nucleic Acids: A Quantum Mechanical Study , 1998 .

[35]  Hornby,et al.  Protein-mediated base flipping. , 1998, Current opinion in biotechnology.

[36]  R. Dickerson,et al.  DNA bending: the prevalence of kinkiness and the virtues of normality. , 1998, Nucleic acids research.

[37]  K. Wüthrich,et al.  Dynamic modes of the flipped‐out cytosine during HhaI methyltransferase–DNA interactions in solution , 1998, The EMBO journal.

[38]  L. Nilsson,et al.  Solvent influence on base stacking. , 1998, Biophysical journal.

[39]  Benoît Roux,et al.  An Integral Equation To Describe the Solvation of Polar Molecules in Liquid Water , 1997 .

[40]  R. Lavery,et al.  Modelling base pair opening: the role of helical twist☆ , 1997 .

[41]  D. C. Rapaport,et al.  The Art of Molecular Dynamics Simulation , 1997 .

[42]  Influence of water and sodium on the energetics of dimethylphosphate and its implications for DNA structure , 1997 .

[43]  R. Roberts,et al.  A structural basis for the preferential binding of hemimethylated DNA by HhaI DNA methyltransferase. , 1996, Journal of molecular biology.

[44]  J. Tainer,et al.  A nucleotide-flipping mechanism from the structure of human uracil–DNA glycosylase bound to DNA , 1996, Nature.

[45]  E. Liepinsh,et al.  Minor groove hydration of DNA in aqueous solution: sequence-dependent next neighbor effect of the hydration lifetimes in d(TTAA)2 segments measured by NMR spectroscopy. , 1996, Nucleic acids research.

[46]  M. Sundaralingam,et al.  Crystal structure of the B-DNA hexamer d(CTCGAG): model for an A-to-B transition. , 1996, Biophysical journal.

[47]  R. Blumenthal,et al.  Finding a basis for flipping bases. , 1996, Structure.

[48]  H. Berman,et al.  Geometric Parameters in Nucleic Acids: Sugar and Phosphate Constituents , 1996 .

[49]  A. R. Srinivasan,et al.  Geometric parameters in nucleic acids: Nitrogenous bases , 1996 .

[50]  Lennart Nilsson,et al.  CONFORMATIONAL FREE ENERGY LANDSCAPE OF APAPA FROM MOLECULAR DYNAMICS SIMULATIONS , 1996 .

[51]  L. Nilsson,et al.  Potential of mean force calculations of the stacking-unstacking process in single-stranded deoxyribodinucleoside monophosphates. , 1995, Biophysical journal.

[52]  B. Brooks,et al.  Constant pressure molecular dynamics simulation: The Langevin piston method , 1995 .

[53]  R J Roberts,et al.  On base flipping , 1995, Cell.

[54]  D. Beglov,et al.  Finite representation of an infinite bulk system: Solvent boundary potential for computer simulations , 1994 .

[55]  R. Roberts,et al.  Hhal methyltransferase flips its target base out of the DNA helix , 1994, Cell.

[56]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[57]  A. Dautant,et al.  Orthorhombic crystal structure of the A-DNA octamer d(GTACGTAC). Comparison with the tetragonal structure. , 1993, European journal of biochemistry.

[58]  A. Gräslund,et al.  Effects of sequence and length on imino proton exchange and base pair opening kinetics in DNA oligonucleotide duplexes. , 1992, Nucleic acids research.

[59]  R. Swendsen,et al.  THE weighted histogram analysis method for free‐energy calculations on biomolecules. I. The method , 1992 .

[60]  J. Moe,et al.  Kinetics and energetics of base-pair opening in 5'-d(CGCGAATTCGCG)-3' and a substituted dodecamer containing G.T mismatches. , 1992, Biochemistry.

[61]  R. Shafer,et al.  The octamer motif in immunoglobulin genes: extraction of structural constraints from two-dimensional NMR studies. , 1992, Biochemistry.

[62]  S. Swaminathan,et al.  Molecular dynamics of B-DNA including water and counterions: a 140-ps trajectory for d(CGCGAATTCGCG) based on the GROMOS force field , 1991 .

[63]  R. Dickerson,et al.  The structure of B-helical C-G-A-T-C-G-A-T-C-G and comparison with C-C-A-A-C-G-T-T-G-G. The effect of base pair reversals. , 1991, The Journal of biological chemistry.

[64]  J. Ramstein,et al.  Energetic coupling between DNA bending and base pair opening. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[65]  J. Leroy,et al.  Study of structure, base-pair opening kinetics and proton exchange mechanism of the d-(AATTGCAATT) self-complementary oligodeoxynucleotide in solution. , 1988, Nucleic acids research.

[66]  M. Guéron,et al.  Characterization of base-pair opening in deoxynucleotide duplexes using catalyzed exchange of the imino proton. , 1988, Journal of Molecular Biology.

[67]  M. Guéron,et al.  A single mode of DNA base-pair opening drives imino proton exchange , 1987, Nature.

[68]  M. Nakanishi,et al.  Determination of the kinetics of deuteration of DNA.RNA hybrids by ultraviolet spectroscopy. , 1985, Biochemistry.

[69]  P. Kollman,et al.  Molecular mechanical studies of base‐pair opening in d(CGCGC):d(GCGCG), dG5·dC5, d(TATAT):d(ATATA), and dA5·dT5 in the B and Z forms of DNA , 1984 .

[70]  M. Nakanishi,et al.  A hydrogen exchange study of the open segment in a DNA double helix. , 1984, Biochimica et biophysica acta.

[71]  Wolfram Saenger,et al.  Principles of Nucleic Acid Structure , 1983 .

[72]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[73]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[74]  P. Kollman,et al.  Molecular mechanical studies of DNA flexibility: coupled backbone torsion angles and base-pair openings. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[75]  M Karplus,et al.  Dynamical theory of activated processes in globular proteins. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[76]  N. Kallenbach,et al.  Base-pair opening and closing reactions in the double helix. A stopped-flow hydrogen exchange study in poly(rA).poly(rU). , 1979, Journal of molecular biology.

[77]  M. Karplus,et al.  Dynamics of activated processes in globular proteins. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[78]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .