Fuzzy functional observer for the control of the glucose-insulin system

[1]  Tyrone Fernando,et al.  Functional Observability and the Design of Minimum Order Linear Functional Observers , 2010, IEEE Transactions on Automatic Control.

[2]  Jianbin Qiu,et al.  Adaptive Fuzzy Control for Nontriangular Structural Stochastic Switched Nonlinear Systems With Full State Constraints , 2019, IEEE Transactions on Fuzzy Systems.

[3]  Shengyuan Xu,et al.  Fuzzy Control System Design via Fuzzy Lyapunov Functions , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[4]  Mohamed Darouach,et al.  Generalized dynamic observer design for quasi-LPV systems , 2018, Autom..

[5]  Mohamed Darouach Existence and design of functional observers for linear systems , 2000, IEEE Trans. Autom. Control..

[6]  Dragan Pamucar,et al.  Portfolio model for analyzing human resources: An approach based on neuro-fuzzy modeling and the simulated annealing algorithm , 2017, Expert Syst. Appl..

[7]  Alfredo Germani,et al.  Mathematical Models and State Observation of the Glucose-Insulin Homeostasis , 2003, System Modelling and Optimization.

[8]  Cheng-Liang Chen,et al.  Modeling the physiological glucose-insulin system on normal and diabetic subjects , 2010, Comput. Methods Programs Biomed..

[9]  Mohamed Darouach,et al.  New unified H∞ dynamic observer design for linear systems with unknown inputs , 2016, Autom..

[10]  Karolos M. Grigoriadis,et al.  A unified algebraic approach to linear control design , 1998 .

[11]  Horacio J. Marquez,et al.  A frequency domain approach to state estimation , 2003, J. Frankl. Inst..

[12]  Yin Zhenyu,et al.  Hybrid controllability of linear switched systems , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[13]  Dragan Pamucar,et al.  Cost and risk aggregation in multi-objective route planning for hazardous materials transportation - A neuro-fuzzy and artificial bee colony approach , 2016, Expert Syst. Appl..

[14]  Zhinong Miao,et al.  A New Method for Fuzzy System Representation and Implementation , 2008, 2008 Fifth International Conference on Fuzzy Systems and Knowledge Discovery.

[15]  M. Fisher,et al.  A semiclosed-loop algorithm for the control of blood glucose levels in diabetics , 1991, IEEE Transactions on Biomedical Engineering.

[16]  Peng Shi,et al.  Robust Constrained Control for MIMO Nonlinear Systems Based on Disturbance Observer , 2015, IEEE Transactions on Automatic Control.

[17]  Mohamed Darouach,et al.  H∞ dynamical observers design for linear descriptor systems. Application to state and unknown input estimation , 2015, Eur. J. Control.

[18]  Tyrone Fernando,et al.  Existence Conditions for Functional Observability From an Eigenspace Perspective , 2011, IEEE Transactions on Automatic Control.

[19]  C. Cobelli,et al.  Artificial Pancreas: Past, Present, Future , 2011, Diabetes.

[20]  Dragan Pamucar,et al.  Planning the City Logistics Terminal Location by Applying the Green p-Median Model and Type-2 Neurofuzzy Network , 2016, Comput. Intell. Neurosci..

[21]  J. Moreno,et al.  Quasi-unknown input observers for linear systems , 2001, Proceedings of the 2001 IEEE International Conference on Control Applications (CCA'01) (Cat. No.01CH37204).

[22]  Ligang Wu,et al.  Event-triggered fuzzy control of nonlinear systems with its application to inverted pendulum systems , 2018, Autom..

[23]  Kazuo Tanaka,et al.  Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs , 1998, IEEE Trans. Fuzzy Syst..

[24]  T. Taniguchi,et al.  Model-based fuzzy control of TORA system: fuzzy regulator and fuzzy observer design via LMIs that represent decay rate, disturbance rejection, robustness, optimality , 1998, 1998 IEEE International Conference on Fuzzy Systems Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36228).

[25]  Dong Ryeol Shin,et al.  Dynamic observers for linear time-invariant systems , 2002, Autom..

[26]  D. Luenberger Observers for multivariable systems , 1966 .

[27]  Kazuo Tanaka,et al.  A Sum-of-Squares Approach to Modeling and Control of Nonlinear Dynamical Systems With Polynomial Fuzzy Systems , 2009, IEEE Transactions on Fuzzy Systems.