Parameter Structures for Parametrized Modal Operators

The parameters of the parameterized modal operators [p] and 〈p〉 usually represent agents (in the epistemic interpretation) or actions (in the dynamic logic interpretation) or the like. In this paper the application of the idea of parametrized modal operators is extended in in two ways: First of all a modified neighbourhood semantics is defined which permits among others the interpretation of the parameters as probability values. A formula [5] F may for example express the fact that in at least 50% of all cases (worlds) F holds. These probability values can be numbers, qualitative descriptions and even arbitrary terms. Secondly a general theory of the parameters and in particular of the characteristic operations on the parameters is developed which unifies for example the multiplication of numbers in the probabilistic interpretation of the parameters and the sequencing of actions in the dynamic logic interpretation.

[1]  Richard A. Frost,et al.  Introduction to Knowledge Base Systems , 1986 .

[2]  M. Schmidt-Schauβ Computational Aspects of an Order-Sorted Logic with Term Declarations , 1989 .

[3]  Saul Kripke,et al.  A completeness theorem in modal logic , 1959, Journal of Symbolic Logic.

[4]  George Gratzer,et al.  Universal Algebra , 1979 .

[5]  Joseph Y. Halpern An Analysis of First-Order Logics of Probability , 1989, IJCAI.

[6]  Andreas Herzig Raisonnement automatique en logique modale et algorithmes d'unification , 1989 .

[7]  Brian F. Chellas Modal Logic: Normal systems of modal logic , 1980 .

[8]  Edward H. Shortliffe,et al.  A model of inexact reasoning in medicine , 1990 .

[9]  Christoph Walther,et al.  A Many-Sorted Calculus Based on Resolution and Paramodulation , 1982, IJCAI.

[10]  Martín Abadi,et al.  Modal Theorem Proving , 1986, CADE.

[11]  Luis Fariñas del Cerro,et al.  Deterministic Modal Logics for Automated Deduction , 1990, ECAI.

[12]  Hans Jürgen Ohlbach,et al.  A Resolution Calculus for Modal Logics , 1988, CADE.

[13]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[14]  Ronald Fagin,et al.  Belief, Awareness, and Limited Reasoning. , 1987, Artif. Intell..

[15]  Max J. Cresswell,et al.  A companion to modal logic , 1984 .

[16]  Patrice Enjalbert,et al.  Modal Theorem Proving: An Equational Viewpoint , 1989, IJCAI.

[17]  Wolfgang Rautenberg,et al.  Klassische und nichtklassische Aussagenlogik , 1979 .

[18]  Saul A. Kripke,et al.  Semantical Analysis of Modal Logic I Normal Modal Propositional Calculi , 1963 .

[19]  M. Fitting Proof Methods for Modal and Intuitionistic Logics , 1983 .