Genetic variability of Chalara fraxinea, dieback cause of European ash (Fraxinus excelsior L.)

[1]  Wen Zhu,et al.  [Population genetics of plant pathogens]. , 2012, Yi chuan = Hereditas.

[2]  T. Kowalski,et al.  Badania nad zamieraniem jesionu (Fraxinus excelsior L.) w drzewostanach Nadleśnictwa Włoszczowa [The studies on ash dying (Fraxinus excelsior L.) in the Włoszczowa Forest Unit stands] , 2012 .

[3]  T. Kowalski,et al.  Morphologial variation in colonies of Chalara fraxinea isolated from ash (Fraxinus excelsior L.) stems with symptoms of dieback and effects of temperature on colony growth and structure , 2012 .

[4]  R. Drenkhan,et al.  First record of Chalara fraxinea in Finland and genetic variation among isolates sampled from Åland, mainland Finland, Estonia and Latvia , 2011 .

[5]  T. Sieber,et al.  Cryptic speciation in Hymenoscyphus albidus , 2011 .

[6]  J. P. Skovsgaard,et al.  Associations among symptoms of dieback in even-aged stands of ash (Fraxinus excelsior L.) , 2010 .

[7]  D. Jurc,et al.  First Report of Chalara fraxinea on Common Ash in Italy. , 2010, Plant disease.

[8]  O. Holdenrieder,et al.  The teleomorph of Chalara fraxinea, the causal agent of ash dieback , 2009 .

[9]  I. Szabó First report of Chalara fraxinea affecting common ash in Hungary , 2009 .

[10]  W. Kraj Differentiation and Genetic Structure of Sclerophoma pythiophila Strains on Pinus sylvestris in Poland , 2009 .

[11]  O. Holdenrieder,et al.  Rapid in planta detection of Chalara fraxinea by a real-time PCR assay using a dual-labelled probe , 2009, European Journal of Plant Pathology.

[12]  H. Solheim,et al.  Chalara fraxinea Isolated from Diseased Ash in Norway. , 2009, Plant disease.

[13]  Remigijus Bakys,et al.  Investigations concerning the role of Chalara fraxinea in declining Fraxinus excelsior , 2009 .

[14]  O. Holdenrieder,et al.  Pathogenicity of Chalara fraxinea. , 2009 .

[15]  T. Kowalski Rozprzestrzenienie grzyba Chalara fraxinea w aspekcie procesu chorobowego jesionu w Polsce , 2009 .

[16]  F. Meier,et al.  Chalara-Krankheit an Eschen. Das Triebsterben der Esche in der Schweiz , 2009 .

[17]  T. Kirisits,et al.  The current situation of ash dieback caused by Chalara fraxinea in Austria , 2009 .

[18]  T. Kirisits,et al.  First report of the ash dieback pathogen Chalara fraxinea on Fraxinus excelsior in Austria , 2008 .

[19]  T. Kowalski,et al.  Genetic variation in Polish strains of Gremmeniella abietina , 2008 .

[20]  O. Holdenrieder,et al.  Eine neue Pilzkrankheit an Esche in Europa | A new fungal disease of ash in Europe , 2008 .

[21]  J. Stenlid,et al.  Occurrence and pathogenicity of fungi in necrotic and non-symptomatic shoots of declining common ash (Fraxinus excelsior) in Sweden , 2008, European Journal of Forest Research.

[22]  J. Hantula,et al.  Gremmeniella abietina types cannot be distinguished using ascospore morphology , 2006 .

[23]  T. Kowalski,et al.  Chalara fraxinea sp. nov. associated with dieback of ash (Fraxinus excelsior) in Poland , 2006 .

[24]  P. Smouse,et al.  genalex 6: genetic analysis in Excel. Population genetic software for teaching and research , 2006 .

[25]  V. Lygis,et al.  Fungi associated with the decline of Fraxinus excelsior in the Baltic States and Sweden. , 2006 .

[26]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[27]  K. Larsson,et al.  Wood-inhabiting fungi in stems of Fraxinus excelsior in declining ash stands of northern Lithuania, with particular reference to Armillaria cepistipes , 2005 .

[28]  P. Smouse,et al.  RAPD variation within and among natural populations of outcrossing buffalograss [Buchloë dactyloides (Nutt.) Engelm.] , 1993, Theoretical and Applied Genetics.

[29]  J. Carlson,et al.  Segregation of random amplified DNA markers in F1 progeny of conifers , 1991, Theoretical and Applied Genetics.

[30]  H. Hattemer,et al.  Genetic distance between populations , 1982, Theoretical and Applied Genetics.

[31]  B. MacDonald Population Genetics of Plant Pathogens , 2004 .

[32]  K. Przybył Fungi associated with necrotic apical parts of Fraxinus excelsior shoots , 2002 .

[33]  T. Sieber,et al.  Characterisation of dark septate endophytic fungi (DSE) using inter-simple-sequence-repeat-anchored polymerase chain reaction (ISSR-PCR) amplification , 2001 .

[34]  M. Macnair Genetics of Populations (2nd edn) , 2000, Heredity.

[35]  R. Vilgalys,et al.  EVIDENCE FOR LIMITED INTERCONTINENTAL GENE FLOW IN THE COSMOPOLITAN MUSHROOM, SCHIZOPHYLLUM COMMUNE , 1999, Evolution; international journal of organic evolution.

[36]  J. Hantula,et al.  Variation of RAMS markers within the intersterility groups of Heterobasidion annosum in Europe , 1999 .

[37]  R. Ennos,et al.  Genetic variability in the canker pathogen fungus, Gremmeniella abietina. 2. Fine-scale investigation of the population genetic structure , 1997 .

[38]  Rong‐Cai Yang,et al.  PopGene, the user-friendly shareware for population genetic analysis, molecular biology and biotechnology center , 1997 .

[39]  R. Hamelin,et al.  Random amplified microsatellites (RAMS) — a novel method for characterizing genetic variation within fungi , 1996 .

[40]  D. Labuda,et al.  Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. , 1994, Genomics.

[41]  T. Gillespie,et al.  Modeling Leaf Wetness in Relation to Plant Disease Epidemiology , 1992 .

[42]  T. White Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics , 1990 .

[43]  J. Ellis,et al.  Microfungi on Land Plants. , 1986 .

[44]  J. Ellis,et al.  Microfungi on Land Plants: An Identification Handbook , 1985 .

[45]  J. Burdon,et al.  The effect of sexual and asexual reproduction on the isozyme structure of populations of Puccinia graminis , 1985 .

[46]  Masatoshi Nei,et al.  Genetic Distance between Populations , 1972, The American Naturalist.

[47]  R. Lewontin The Apportionment of Human Diversity , 1972 .

[48]  Jay L. Lush,et al.  The genetics of populations , 1948 .