Genesis and regulation of the heart automaticity.

The heart automaticity is a fundamental physiological function in higher organisms. The spontaneous activity is initiated by specialized populations of cardiac cells generating periodical electrical oscillations. The exact cascade of steps initiating the pacemaker cycle in automatic cells has not yet been entirely elucidated. Nevertheless, ion channels and intracellular Ca(2+) signaling are necessary for the proper setting of the pacemaker mechanism. Here, we review the current knowledge on the cellular mechanisms underlying the generation and regulation of cardiac automaticity. We discuss evidence on the functional role of different families of ion channels in cardiac pacemaking and review recent results obtained on genetically engineered mouse strains displaying dysfunction in heart automaticity. Beside ion channels, intracellular Ca(2+) release has been indicated as an important mechanism for promoting automaticity at rest as well as for acceleration of the heart rate under sympathetic nerve input. The potential links between the activity of ion channels and Ca(2+) release will be discussed with the aim to propose an integrated framework of the mechanism of automaticity.

[1]  Dario DiFrancesco,et al.  Direct activation of cardiac pacemaker channels by intracellular cyclic AMP , 1991, Nature.

[2]  J. Le Guennec,et al.  Streptomycin reverses a large stretch induced increases in [Ca2+]i in isolated guinea pig ventricular myocytes. , 1994, Cardiovascular research.

[3]  J. Prost,et al.  Electrophysiological effects of S 16257, a novel sino‐atrial node modulator, on rabbit and guinea‐pig cardiac preparations: comparison with UL‐FS 49 , 1994, British journal of pharmacology.

[4]  Yi Cui,et al.  Localisation and functional significance of ryanodine receptors during beta-adrenoceptor stimulation in the guinea-pig sino-atrial node. , 2000, Cardiovascular research.

[5]  M. O. Speidel,et al.  Metallurgy: High nickel release from 1- and 2-euro coins , 2002, Nature.

[6]  K. Ono,et al.  A rapidly activating delayed rectifier K+ channel in rabbit sinoatrial node cells. , 1995, The American journal of physiology.

[7]  Jules C. Hancox,et al.  A method for isolating rabbit atrioventricular node myocytes which retain normal morphology and function. , 1993, The American journal of physiology.

[8]  P. Greengard,et al.  Chloride conductance regulated by cyclic AMP-dependent protein kinase in cardiac myocytes , 1989, Nature.

[9]  P. Hunter,et al.  Computational physiology and the physiome project , 2004, Experimental physiology.

[10]  T. Sano,et al.  Effect of temperature on pacemaker activity of rabbit sinus node. , 1967, The American journal of physiology.

[11]  J. Qu,et al.  Ionic basis of ryanodine's negative chronotropic effect on pacemaker cells isolated from the sinoatrial node. , 1997, American journal of physiology. Heart and circulatory physiology.

[12]  D. DiFrancesco,et al.  The onset and autonomic regulation of cardiac pacemaker activity: relevance of the f current. , 1995, Cardiovascular research.

[13]  A. V. Holden,et al.  Control of the pacemaker activity of the sinoatrial node by intracellular Ca2+. Experiments and modelling , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[14]  H A Lindberg,et al.  Heart rate as a prognostic factor for coronary heart disease and mortality: findings in three Chicago epidemiologic studies. , 1980, American journal of epidemiology.

[15]  J. Lundberg,et al.  Chapter 17 On the possible roles of noradrenaline, adenosine 5′-triphosphate and neuropeptide Y as sympathetic cotransmitters in the mouse vas deferens , 1986 .

[16]  M. Sanguinetti,et al.  Molecular and Cellular Mechanisms of Cardiac Arrhythmias , 2001, Cell.

[17]  P B Corr,et al.  Demonstration of a widely distributed atrial pacemaker complex in the human heart. , 1988, Circulation.

[18]  Dario DiFrancesco,et al.  Heart rate lowering by specific and selective I(f) current inhibition with ivabradine: a new therapeutic perspective in cardiovascular disease. , 2004, Drugs.

[19]  D. Kreitner,et al.  Electrophysiological study of the two main pacemaker mechanisms in the rabbit sinus node. , 1985, Cardiovascular research.

[20]  L. Gillet,et al.  Specific decrease of secretin/VIP-stimulated adenylate cyclase in the heart from the Lyon strain of hypertensive rats , 1984, Peptides.

[21]  R. Robinson,et al.  I(f)-dependent modulation of pacemaker rate mediated by cAMP in the presence of ryanodine in rabbit sino-atrial node cells. , 2003, Journal of molecular and cellular cardiology.

[22]  D. DiFrancesco,et al.  Modulation of the hyperpolarization-activated current (I(f)) by adenosine in rabbit sinoatrial myocytes. , 1996, Circulation.

[23]  J. Brachmann,et al.  Effect of Hypoxia on the Sinoatrial Node, Atrium, and Atrioventricular Node in the Rabbit Heart , 1979, Circulation research.

[24]  Ming Lei,et al.  Specific pattern of ionic channel gene expression associated with pacemaker activity in the mouse heart , 2005, The Journal of physiology.

[25]  Z. Bosnjak,et al.  Effects of Hypoxia on Adult and Neonatal Pacemaker Rates , 1985, Obstetrics and Gynecology.

[26]  Mitsuru Yamamoto,et al.  Extended atrial conduction system characterised by the expression of the HCN4 channel and connexin45. , 2006, Cardiovascular research.

[27]  K. Willecke,et al.  Connexin-mediated cardiac impulse propagation: connexin 30.2 slows atrioventricular conduction in mouse heart. , 2006, Trends in cardiovascular medicine.

[28]  N. Klugbauer,et al.  Enhanced Expression of L-type Cav1.3 Calcium Channels in Murine Embryonic Hearts from Cav1.2-deficient Mice* , 2003, Journal of Biological Chemistry.

[29]  I. Efimov,et al.  Site of Origin and Molecular Substrate of Atrioventricular Junctional Rhythm in the Rabbit Heart , 2003, Circulation research.

[30]  J. Ornato,et al.  The mystery of bradyasystole during cardiac arrest. , 1996, Annals of emergency medicine.

[31]  B. Fleischmann,et al.  Intracellular Ca2+ oscillations drive spontaneous contractions in cardiomyocytes during early development. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[32]  G. Dayanithi,et al.  T-type calcium currents in rat cardiomyocytes during postnatal development: contribution to hormone secretion. , 2000, American journal of physiology. Heart and circulatory physiology.

[33]  D. Allen,et al.  How does β‐adrenergic stimulation increase the heart rate? The role of intracellular Ca2+ release in amphibian pacemaker cells , 1999, The Journal of physiology.

[34]  Dario DiFrancesco,et al.  Characterization of single pacemaker channels in cardiac sino-atrial node cells , 1986, Nature.

[35]  C. Baumgarten,et al.  Swelling-activated chloride channels in cardiac physiology and pathophysiology. , 2003, Progress in biophysics and molecular biology.

[36]  J. Jalife,et al.  Electrophysiology of single heart cells from the rabbit tricuspid valve. , 1990, The Journal of physiology.

[37]  J. Leonard,et al.  Familial heart block and sinus bradycardia. Classification and natural history. , 1972, The American journal of cardiology.

[38]  R. Kaufmann,et al.  Automatie-fördernde Dehnungseffekte an Purkinje-Fäden, Papillarmuskeln und Vorhoftrabekeln von Rhesus-Affen , 1967, Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere.

[39]  A. Noma,et al.  Resting K conductances in pacemaker and non-pacemaker heart cells of the rabbit. , 1984, The Japanese journal of physiology.

[40]  W. Marktl,et al.  Prediction of survival after out-of-hospital cardiac arrest: results of a community-based study in Vienna. , 1996, Resuscitation.

[41]  D. Clapham,et al.  Recombinant G-protein beta gamma-subunits activate the muscarinic-gated atrial potassium channel. , 1994, Nature.

[42]  M. Rosen,et al.  Effects of protein kinase inhibitors on canine Purkinje fibre pacemaker depolarization and the pacemaker current i(f). , 1991, The Journal of physiology.

[43]  Jamie I Vandenberg,et al.  Slowed conduction and ventricular tachycardia after targeted disruption of the cardiac sodium channel gene Scn5a , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Michael D Stern,et al.  Diastolic calcium release controls the beating rate of rabbit sinoatrial node cells: numerical modeling of the coupling process. , 2004, Biophysical journal.

[45]  L. Hittinger,et al.  Differential effects of heart rate reduction and beta-blockade on left ventricular relaxation during exercise. , 2002, American journal of physiology. Heart and circulatory physiology.

[46]  J. Boineau,et al.  Origin of the Sinus Impulse , 1996, Journal of cardiovascular electrophysiology.

[47]  D. Severson,et al.  Characteristics of nitric oxide‐mediated cholinergic modulation of calcium current in rabbit sino‐atrial node , 1998, The Journal of physiology.

[48]  W. Giles,et al.  A cellular mechanism for nitric oxide-mediated cholinergic control of mammalian heart rate , 1995, The Journal of general physiology.

[49]  J. Choate,et al.  Neuronal control of heart rate in isolated mouse atria. , 2003, American journal of physiology. Heart and circulatory physiology.

[50]  M. Fishman,et al.  The slow mo mutation reduces pacemaker current and heart rate in adult zebrafish. , 2001, American journal of physiology. Heart and circulatory physiology.

[51]  Colleen Hanna,et al.  How much tachycardia in infants can be attributed to fever? , 2004, Annals of emergency medicine.

[52]  D. Riley,et al.  Morphological study of the innervation pattern of the rabbit sinoatrial node. , 1989, The American journal of anatomy.

[53]  D. Noble,et al.  Effect of isoprenaline, carbachol, and Cs+ on Na+ activity and pacemaker potential in rabbit SA node cells. , 1999, American journal of physiology. Heart and circulatory physiology.

[54]  R. Wilders,et al.  Atrio-Sinus Interaction Demonstrated by Blockade of the Rapid Delayed Rectifier Current , 2002, Circulation.

[55]  H. Brown,et al.  How does adrenaline accelerate the heart? , 1979, Nature.

[56]  J. Tamargo,et al.  Pharmacology of Cardiac Potassium Channels , 2003 .

[57]  E. Perez-Reyes Molecular Characterization of a Novel Family of Low Voltage-Activated, T-Type, Calcium Channels , 1998, Journal of bioenergetics and biomembranes.

[58]  S. Nattel,et al.  Sinus node dysfunction and hyperpolarization-activated (HCN) channel subunit remodeling in a canine heart failure model. , 2005, Cardiovascular research.

[59]  G. Breithardt,et al.  Pacemaker channel dysfunction in a patient with sinus node disease. , 2003, The Journal of clinical investigation.

[60]  Deck Ka,et al.  [EFFECTS OF STRETCH ON THE SPONTANEOUSLY BEATING, ISOLATED SINUS NODE]. , 1964 .

[61]  D. Noble,et al.  Facilitation of the L-type calcium current in rabbit sino-atrial cells: effect on cardiac automaticity. , 2000, Cardiovascular research.

[62]  E. Lakatta,et al.  Membrane Potential Fluctuations Resulting From Submembrane Ca2+ Releases in Rabbit Sinoatrial Nodal Cells Impart an Exponential Phase to the Late Diastolic Depolarization That Controls Their Chronotropic State , 2006, Circulation research.

[63]  I. Briggs,et al.  Inhibitory actions of ZENECA ZD7288 on whole‐cell hyperpolarization activated inward current (If) in guinea‐pig dissociated sinoatrial node cells , 1993, British journal of pharmacology.

[64]  G. Brooks,et al.  Determination of metabolic and heart rate responses of rats to treadmill exercise. , 1978, Journal of applied physiology: respiratory, environmental and exercise physiology.

[65]  J Clémenty,et al.  Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. , 1998, The New England journal of medicine.

[66]  T. C. West,et al.  The influence of ouabain on cholinergic responses in the sinoatrial node. , 1966, The Journal of pharmacology and experimental therapeutics.

[67]  R. Solaro,et al.  Regulation of L-Type Calcium Channel and Delayed Rectifier Potassium Channel Activity by p21-Activated Kinase-1 in Guinea Pig Sinoatrial Node Pacemaker Cells , 2007, Circulation research.

[68]  H. Masumiya,et al.  Effects of Ca2+ channel antagonists on sinus node: prolongation of late phase 4 depolarization by efonidipine. , 1997, European journal of pharmacology.

[69]  D. DiFrancesco,et al.  Localization of Pacemaker Channels in Lipid Rafts Regulates Channel Kinetics , 2004, Circulation research.

[70]  A. Furuse,et al.  Sinus node potential during cold cardioplegia , 1983, The Japanese journal of surgery.

[71]  W. Giles,et al.  Mediation by nitric oxide of the indirect effects of adenosine on calcium current in rabbit heart pacemaker cells , 1996, British journal of pharmacology.

[72]  T. Paul,et al.  Familial idiopathic atrial fibrillation with bradyarrhythmia , 2005, European Journal of Pediatrics.

[73]  P Kohl,et al.  Mechanosensitive fibroblasts in the sino‐atrial node region of rat heart: interaction with cardiomyocytes and possible role , 1994, Experimental physiology.

[74]  R. Tsien,et al.  Ionic mechanisms of pacemaker activity in cardiac Purkinje fibers. , 1978, Federation proceedings.

[75]  W. Aird,et al.  Enhancement of murine cardiac chronotropy by the molecular transfer of the human beta2 adrenergic receptor cDNA. , 1998, The Journal of clinical investigation.

[76]  P. D. Gollnick,et al.  Oxygen uptake of rats at different work intensities , 1976, Pflügers Archiv.

[77]  A. V. van Ginneken,et al.  Two types of action potential configuration in single cardiac Purkinje cells of sheep. , 1999, American journal of physiology. Heart and circulatory physiology.

[78]  W H Lamers,et al.  Distribution of atrial and nodal cells within the rabbit sinoatrial node: models of sinoatrial transition. , 1998, Circulation.

[79]  B. Delisle,et al.  Identification of the T-Type Calcium Channel (CaV3.1d) in Developing Mouse Heart , 2001, Circulation research.

[80]  J. Lenfant,et al.  Mechanism of muscarinic control of the high-threshold calcium current in rabbit sino-atrial node myocytes , 1993, Pflügers Archiv.

[81]  L S Dreifus,et al.  Sites of Impulse Formation within the Atrioventricular Junction of the Rabbit , 1968, Circulation research.

[82]  R. Coronel,et al.  Ionic Remodeling of Sinoatrial Node Cells by Heart Failure , 2003, Circulation.

[83]  A. Noma,et al.  A sustained inward current activated at the diastolic potential range in rabbit sino‐atrial node cells. , 1995, The Journal of physiology.

[84]  Toyoki Mori,et al.  Nitric oxide (NO) is not involved in accentuated antagonism for chronotropy in the isolated mouse atrium , 2003, Naunyn-Schmiedeberg's Archives of Pharmacology.

[85]  S. Siegelbaum,et al.  Regulation of Gating and Rundown of HCN Hyperpolarization-activated Channels by Exogenous and Endogenous PIP2 , 2006, The Journal of general physiology.

[86]  B. Fermini,et al.  Removal of sialic acid alters both T- and L-type calcium currents in cardiac myocytes. , 1991, The American journal of physiology.

[87]  J. Clark,et al.  Mathematical model of an adult human atrial cell: the role of K+ currents in repolarization. , 1998, Circulation research.

[88]  D. Pauza,et al.  Morphology, distribution, and variability of the epicardiac neural ganglionated subplexuses in the human heart , 2000, The Anatomical record.

[89]  Liming Zhang,et al.  Cellular electrophysiology of canine pulmonary vein cardiomyocytes: action potential and ionic current properties , 2003, The Journal of physiology.

[90]  E. Carmeliet Cardiac ionic currents and acute ischemia: from channels to arrhythmias. , 1999, Physiological reviews.

[91]  Jan M Ruijter,et al.  Three-dimensional reconstruction of gene expression patterns during cardiac development. , 2003, Physiological genomics.

[92]  Jennifer W Mitchell,et al.  Identification of the calcium channel α1E (Cav2.3) isoform expressed in atrial myocytes , 2002 .

[93]  K. Mullane,et al.  Role of adenosine in the heart and circulation. , 1996, Cardiovascular research.

[94]  T. Opthof,et al.  Changes in sinus node function in a rabbit model of heart failure with ventricular arrhythmias and sudden death. , 2000, Circulation.

[95]  M. Silverman,et al.  Why does the heart beat? The discovery of the electrical system of the heart. , 2006, Circulation.

[96]  R. Henning Vagal stimulation during muscarinic and beta-adrenergic blockade increases atrial contractility and heart rate. , 1992, Journal of the autonomic nervous system.

[97]  YoramRudy,et al.  Mechanism of Pacemaking in IK1-Downregulated Myocytes , 2003 .

[98]  M. Shoda,et al.  Stretch‐activated anion currents of rabbit cardiac myocytes. , 1992, The Journal of physiology.

[99]  M. Schimerlik Structure and regulation of muscarinic receptors. , 1989, Annual review of physiology.

[100]  W. Giles,et al.  Cardiac ion channel expression and contractile function in mice with deletion of thyroid hormone receptor alpha or beta. , 2001, Endocrinology.

[101]  A. Grace,et al.  Regulation of intracellular pH in the perfused heart by external HCO3- and Na(+)-H+ exchange. , 1993, The American journal of physiology.

[102]  A. Coulombe,et al.  Functional and molecular characterization of a T-type Ca(2+) channel during fetal and postnatal rat heart development. , 2002, Journal of molecular and cellular cardiology.

[103]  M. Harri,et al.  Temperature responses of rats to treadmill exercise, and the effect of thermoregulatory capacity. , 1982, Acta physiologica Scandinavica.

[104]  L. Puybasset,et al.  Coronary and hemodynamic effects of S 16257, a new bradycardic agent, in resting and exercising conscious dogs. , 1995, The Journal of pharmacology and experimental therapeutics.

[105]  M Lei,et al.  Selected contribution: axial stretch increases spontaneous pacemaker activity in rabbit isolated sinoatrial node cells. , 2000, Journal of applied physiology.

[106]  P. C. Viswanathan,et al.  Recreating an artificial biological pacemaker: insights from a theoretical model. , 2006, Heart rhythm.

[107]  P. Robberecht,et al.  Heart receptors for VIP, PHI and secretin are able to activate adenylate cyclase and to mediate inotropic and chronotropic effects. Species variations and physiopathology , 1984, Peptides.

[108]  W. Flameng,et al.  Adenosine, adenosine receptors and myocardial protection: an updated overview. , 2001, Cardiovascular research.

[109]  B. Wranne,et al.  A graded treadmill test for rats: maximal work performance in normal and anemic animals. , 1973, Journal of applied physiology.

[110]  P. Lichter,et al.  Molecular characterization of a slowly gating human hyperpolarization-activated channel predominantly expressed in thalamus, heart, and testis. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[111]  Frank Baas,et al.  Abnormal heart rate and body temperature in mice lacking thyroid hormone receptor α1 , 1998, The EMBO journal.

[112]  K. Ono,et al.  Properties of the delayed rectifier potassium current in porcine sino‐atrial node cells , 2000, The Journal of physiology.

[113]  W. Trautwein,et al.  Relaxation of the ACh-induced potassium current in the rabbit sinoatrial node cell , 1978, Pflügers Archiv.

[114]  William A Catterall,et al.  Overview of the voltage-gated sodium channel family , 2003, Genome Biology.

[115]  M. Boyett,et al.  Declining Into Failure: The Age-Dependent Loss of the L-Type Calcium Channel Within the Sinoatrial Node , 2007, Circulation.

[116]  D. Gadsby,et al.  Direct measurement of changes in sodium pump current in canine cardiac Purkinje fibers. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[117]  W. Giles,et al.  Relaxin increases heart rate by modulating calcium current in cardiac pacemaker cells. , 1994, Circulation research.

[118]  J. Buyon,et al.  Autoantibody-Associated Congenital Heart Block: Outcome in Mothers and Children , 1994, Annals of Internal Medicine.

[119]  Itsuo Kodama,et al.  Regional differences in the electrical activity of the rabbit sinus node , 1985, Pflügers Archiv.

[120]  D. DiFrancesco Serious workings of the funny current. , 2006, Progress in biophysics and molecular biology.

[121]  W. Rottbauer,et al.  Growth and function of the embryonic heart depend upon the cardiac-specific L-type calcium channel alpha1 subunit. , 2001, Developmental cell.

[122]  S. Marom,et al.  Electrophysiological Modulation of Cardiomyocytic Tissue by Transfected Fibroblasts Expressing Potassium Channels: A Novel Strategy to Manipulate Excitability , 2002, Circulation.

[123]  M. Boutjdir Molecular and ionic basis of congenital complete heart block. , 2000, Trends in cardiovascular medicine.

[124]  E. Arvat,et al.  Endocrine and Non-Endocrine Actions of Ghrelin , 2003, Hormone Research in Paediatrics.

[125]  K. Willecke,et al.  Properties of mouse connexin 30.2 and human connexin 31.9 hemichannels: implications for atrioventricular conduction in the heart. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[126]  M. Rosen,et al.  Wild-Type and Mutant HCN Channels in a Tandem Biological-Electronic Cardiac Pacemaker , 2006, Circulation.

[127]  A. Noma,et al.  Nicardipine‐sensitive Na+‐mediated single channel currents in guinea‐pig sinoatrial node pacemaker cells , 1999, The Journal of physiology.

[128]  R. Kass,et al.  Inherited and acquired vulnerability to ventricular arrhythmias: cardiac Na+ and K+ channels. , 2005, Physiological reviews.

[129]  P. D. Gollnick,et al.  Colonic temperature response of rats during exercise. , 1968, Journal of applied physiology.

[130]  Céline Marionneau,et al.  Functional genomics of cardiac ion channel genes. , 2005, Cardiovascular research.

[131]  H. Brown,et al.  Pacemaking in rabbit isolated sino‐atrial node cells during Cs+ block of the hyperpolarization‐activated current if. , 1990, The Journal of physiology.

[132]  T. C. West,et al.  Response of the A‐V Node of the Rabbit to Stimulation of Intracardiac Cholinergic Nerves , 1967, Circulation research.

[133]  D. Paterson,et al.  Raised Extracellular Potassium Attenuates the Sympathetic Modulation of Sino‐Atrial Node Pacemaking in the Isolated Guinea‐Pig Atria , 2001, Experimental physiology.

[134]  S. Severi,et al.  Electrolyte and pH dependence of heart rate during hemodialysis: a computer model analysis. , 2000, Artificial organs.

[135]  Michael R Rosen,et al.  Genes, stem cells and biological pacemakers. , 2004, Cardiovascular research.

[136]  N. Klugbauer,et al.  Expression of T‐ and L‐type calcium channel mRNA in murine sinoatrial node , 2000, FEBS letters.

[137]  K. Mikoshiba,et al.  Initiation of embryonic cardiac pacemaker activity by inositol 1,4,5-trisphosphate-dependent calcium signaling. , 2005, Molecular biology of the cell.

[138]  Richard P. Harvey,et al.  Molecular Pathway for the Localized Formation of the Sinoatrial Node , 2007, Circulation research.

[139]  D DiFrancesco,et al.  Modulation of single hyperpolarization‐activated channels (i(f)) by cAMP in the rabbit sino‐atrial node. , 1994, The Journal of physiology.

[140]  H. Jongsma,et al.  Interaction of adrenaline and acetylcholine on cardiac pacemaker function. Functional inhomogeneity of the rabbit sinus node. , 1980, The Journal of pharmacology and experimental therapeutics.

[141]  J. Borer,et al.  Antianginal and Antiischemic Effects of Ivabradine, an If Inhibitor, in Stable Angina: A Randomized, Double-Blind, Multicentered, Placebo-Controlled Trial , 2003, Circulation.

[142]  R Kaufmann,et al.  [Autonomously promoted extension effect in Purkinje fibers, papillary muscles and trabeculae carneae of rhesus monkeys]. , 1967, Pflugers Archiv fur die gesamte Physiologie des Menschen und der Tiere.

[143]  H Kasanuki,et al.  Background current in sino‐atrial node cells of the rabbit heart. , 1992, The Journal of physiology.

[144]  A. Noma,et al.  Reconstruction of sino-atrial node pacemaker potential based on the voltage clamp experiments. , 1980, The Japanese journal of physiology.

[145]  Paul Webb,et al.  Selective modulation of thyroid hormone receptor action , 2001, The Journal of Steroid Biochemistry and Molecular Biology.

[146]  V. Krinsky,et al.  Genetically engineered cardiac pacemaker: Stem cells transfected with HCN2 gene and myocytes—A model , 2005, q-bio/0511015.

[147]  P. Launay,et al.  TRPM4, a Ca2+-activated nonselective cation channel in mouse sino-atrial node cells. , 2007, Cardiovascular research.

[148]  H. Zhang,et al.  Connexins in the sinoatrial and atrioventricular nodes. , 2006, Advances in cardiology.

[149]  Cooper Ke Some responses of the cardiovascular system to heat and fever. , 1994 .

[150]  E. Neer,et al.  Gαo is necessary for muscarinic regulation of Ca2+ channels in mouse heart , 1997 .

[151]  J. Striessnig Pharmacology, Structure and Function of Cardiac L-Type Ca2+ Channels , 1999, Cellular Physiology and Biochemistry.

[152]  T. N. James,et al.  Structure and function of the sinus node, AV node and His bundle of the human heart: part I-structure. , 2002, Progress in cardiovascular diseases.

[153]  G. A. West,et al.  Correlation of sinus slowing and hyperpolarization caused by adenosine in sinus node , 2004, Pflügers Archiv.

[154]  J. Clark,et al.  A mathematical model of a rabbit sinoatrial node cell. , 1994, The American journal of physiology.

[155]  E. Lakatta,et al.  High Basal Protein Kinase A–Dependent Phosphorylation Drives Rhythmic Internal Ca2+ Store Oscillations and Spontaneous Beating of Cardiac Pacemaker Cells , 2006, Circulation research.

[156]  E. Lakatta,et al.  Dual regulation of Ca2+/calmodulin-dependent kinase II activity by membrane voltage and by calcium influx. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[157]  F. Sachs,et al.  Tarantula peptide inhibits atrial fibrillation , 2001, Nature.

[158]  W. Trautwein,et al.  Acetylcholine activation of single muscarinic K+ channels in isolated pacemaker cells of the mammalian heart , 1983, Nature.

[159]  D. Pauza,et al.  Topographic morphology and age-related analysis of the neuronal number of the rat intracardiac nerve plexus. , 2003, Annals of anatomy = Anatomischer Anzeiger : official organ of the Anatomische Gesellschaft.

[160]  B. Lerman,et al.  Antiadrenergic effects of adenosine on His-Purkinje automaticity. Evidence for accentuated antagonism. , 1988, The Journal of clinical investigation.

[161]  N. Doll,et al.  Emergency Coronary Artery Bypass Graft Surgery for Acute Coronary Syndrome: Beating Heart Versus Conventional Cardioplegic Cardiac Arrest Strategies , 2006, Circulation.

[162]  D. Pauza,et al.  Anatomical study of the neural ganglionated plexus in the canine right atrium: Implications for selective denervation and electrophysiology of the sinoatrial node in dog , 1999, The Anatomical record.

[163]  Henggui Zhang,et al.  Computer Three-Dimensional Reconstruction of the Atrioventricular Node , 2008, Circulation research.

[164]  S. Sorota,et al.  Delayed Activation of Cardiac Swelling‐Induced Chloride Current After Step Changes in Cell Size , 1998, Journal of cardiovascular electrophysiology.

[165]  I. Efimov,et al.  Structure-function relationship in the AV junction. , 2004, The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology.

[166]  J. Cordeiro,et al.  Contribution of neuronal sodium channels to the cardiac fast sodium current INa is greater in dog heart Purkinje fibers than in ventricles. , 2005, Cardiovascular research.

[167]  T. Shibasaki,et al.  Conductance and kinetics of delayed rectifier potassium channels in nodal cells of the rabbit heart. , 1987, The Journal of physiology.

[168]  D. Duan,et al.  Anion transport in heart. , 2000, Physiological reviews.

[169]  W. Antepohl,et al.  Pharmacodynamic interaction between mibefradil and other calcium channel blockers , 2000, Naunyn-Schmiedeberg's Archives of Pharmacology.

[170]  M. Josephson,et al.  Molecular enhancement of porcine cardiac chronotropy , 2001, Heart.

[171]  E. Page,et al.  The surface area of sheep cardiac Purkinje fibres , 1972, The Journal of physiology.

[172]  N. Hagiwara,et al.  Modulation by intracellular Ca2+ of the hyperpolarization‐activated inward current in rabbit single sino‐atrial node cells. , 1989, The Journal of physiology.

[173]  A. Noma,et al.  Slow inward current and its role mediating the chronotropic effect of epinephrine in the rabbit sinoatrfal node , 1980, Pflügers Archiv.

[174]  F. Calaresu,et al.  An experimental analysis of the tachycardia that follows vagal stimulation , 1972, The Journal of physiology.

[175]  D. Clapham,et al.  Ion channel regulation by G proteins. , 1995, Physiological reviews.

[176]  Jules C. Hancox,et al.  Characteristics of single cells isolated from the atrioventricular node of the adult guinea-pig heart. , 2002, Pflügers Archiv.

[177]  G. Isenberg,et al.  Calcium tolerant ventricular myocytes prepared by preincubation in a “KB medium” , 1982, Pflügers Archiv.

[178]  W. C. Randall,et al.  Alterations in subsidiary pacemaker function after prolonged subsidiary pacemaker dominance in the canine right atrium. , 1984, Journal of the American College of Cardiology.

[179]  Yi-Mei Du,et al.  Ionic basis of ischemia-induced bradycardia in the rabbit sinoatrial node. , 2007, Journal of molecular and cellular cardiology.

[180]  A Shrier,et al.  Sodium Channel Distribution Within the Rabbit Atrioventricular Node as Analysed by Confocal Microscopy , 1997, The Journal of physiology.

[181]  J. Lenfant,et al.  Mode of action of bradycardic agent, S 16257, on ionic currents of rabbit sinoatrial node cells , 1996, British journal of pharmacology.

[182]  W. Catterall,et al.  The newborn rabbit sino‐atrial node expresses a neuronal type I‐like Na+ channel. , 1997, The Journal of physiology.

[183]  G. Rozanski,et al.  Electrophysiology of functional subsidiary pacemakers in canine right atrium. , 1985, The American journal of physiology.

[184]  O. Hutter,et al.  Effect of Vagal Stimulation on the Sinus Venosus of the Frog's Heart , 1955, Nature.

[185]  R. Moeckel,et al.  RESPIRATORY SINUS DYSRHYTHMIA PERSISTS IN TRANSPLANTED HUMAN HEARTS FOLLOWING AUTONOMIC BLOCKADE , 1998, Clinical and experimental pharmacology & physiology.

[186]  K. Ono,et al.  Role of rapidly activating delayed rectifier K+ current in sinoatrial node pacemaker activity. , 1995, The American journal of physiology.

[187]  H. Brown,et al.  Voltage‐clamp investigations of membrane currents underlying pace‐maker activity in rabbit sino‐atrial node. , 1980, The Journal of physiology.

[188]  Hee-Sup Shin,et al.  Bradycardia and Slowing of the Atrioventricular Conduction in Mice Lacking CaV3.1/&agr;1G T-Type Calcium Channels , 2006, Circulation research.

[189]  D. Clapham,et al.  Recombinant G-protein βγ-subunits activate the muscarinic-gated atrial potassium channel , 1994, Nature.

[190]  J. Boineau,et al.  Relative densities of muscarinic cholinergic and beta-adrenergic receptors in the canine sinoatrial node and their relation to sites of pacemaker activity. , 1995, Circulation research.

[191]  A. Noma,et al.  The Electrophysiological Properties of Spontaneously Beating Pacemaker Cells Isolated from Mouse Sinoatrial Node , 2003, Journal of Physiology.

[192]  Tomaso Gnecchi-Ruscone,et al.  Familial sinus bradycardia associated with a mutation in the cardiac pacemaker channel. , 2006, The New England journal of medicine.

[193]  A. Koschak,et al.  α1D (Cav1.3) Subunits Can Form L-type Ca2+ Channels Activating at Negative Voltages* , 2001, The Journal of Biological Chemistry.

[194]  C. Bolter,et al.  Do Cardiac Neurons Play a Role in the Intrinsic Control of Heart Rate in the Rat? , 2002, Experimental physiology.

[195]  D DiFrancesco,et al.  Basal responses of the L‐type Ca2+ and hyperpolarization‐activated currents to autonomic agonists in the rabbit sino‐atrial node. , 1996, The Journal of physiology.

[196]  R. Linden,et al.  The effect of intravenous infusions upon the heart rate of the anaesthetized dog , 1955, The Journal of physiology.

[197]  D DiFrancesco,et al.  A study of the ionic nature of the pace‐maker current in calf Purkinje fibres. , 1981, The Journal of physiology.

[198]  M. Biel,et al.  Differential Distribution of Four Hyperpolarization-Activated Cation Channels in Mouse Brain , 1999, Biological chemistry.

[199]  C. Morris,et al.  Dual stretch responses of mHCN2 pacemaker channels: accelerated activation, accelerated deactivation. , 2007, Biophysical journal.

[200]  D. Allen,et al.  Store-Operated Ca2+ Influx and Expression of TRPC Genes in Mouse Sinoatrial Node , 2007, Circulation research.

[201]  Yasutaka Kurata,et al.  Dynamical description of sinoatrial node pacemaking: improved mathematical model for primary pacemaker cell. , 2002, American journal of physiology. Heart and circulatory physiology.

[202]  Edward G Lakatta,et al.  The emergence of a general theory of the initiation and strength of the heartbeat. , 2006, Journal of pharmacological sciences.

[203]  新井 章子 Roles of Cl- channels and Ca[2+] mobilization in stretch-induced increase of SA node pacemaker activity , 1996 .

[204]  D. Noble,et al.  The slow inward current, isi, in the rabbit sino-atrial node investigated by voltage clamp and computer simulation , 1984, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[205]  M. Bristow,et al.  The role of third‐generation beta‐blocking agents in chronic heart failure , 1998, Clinical cardiology.

[206]  M. Biel,et al.  The hyperpolarization-activated channel HCN4 is required for the generation of pacemaker action potentials in the embryonic heart , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[207]  I. Cohen,et al.  Pacemaker current exists in ventricular myocytes. , 1993, Circulation research.

[208]  M. Rosen,et al.  Recreating the biological pacemaker. , 2004, The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology.

[209]  W. Catterall Structure and regulation of voltage-gated Ca2+ channels. , 2000, Annual review of cell and developmental biology.

[210]  Two electrophysiologically distinct types of cultured pacemaker cells from rabbit sinoatrial node. , 1986, The American journal of physiology.

[211]  D. DiFrancesco,et al.  Pacemaker Channels , 2004, Annals of the New York Academy of Sciences.

[212]  L. Fliegel,et al.  Physiological role and regulation of the Na+/H+ exchanger. , 2006, Canadian journal of physiology and pharmacology.

[213]  W. Giles,et al.  A rapidly activating delayed rectifier K+ current regulates pacemaker activity in adult mouse sinoatrial node cells. , 2004, American journal of physiology. Heart and circulatory physiology.

[214]  N. Klugbauer,et al.  Regulation of the calcium channel α1G subunit by divalent cations and organic blockers , 2000, Neuropharmacology.

[215]  D. Terrar,et al.  Possible role of calcium release from the sarcoplasmic reticulum in pacemaking in guinea‐pig sino‐atrial node , 1996, Experimental physiology.

[216]  C. Magyar,et al.  Reciprocal regulation of cardiac Na-K-ATPase and Na/Ca exchanger: hypertension, thyroid hormone, development. , 1995, The American journal of physiology.

[217]  H. Brown,et al.  Cardiac pacemaking in the sinoatrial node. , 1993, Physiological reviews.

[218]  Dao-wu Wang,et al.  The transient outward current in mice lacking the potassium channel gene Kv1.4 , 1998, The Journal of physiology.

[219]  D DiFrancesco,et al.  Reciprocal role of the inward currents ib, Na and if in controlling and stabilizing pacemaker frequency of rabbit sino-atrial node cells , 1992, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[220]  Stefan Herrmann,et al.  HCN4 provides a ‘depolarization reserve’ and is not required for heart rate acceleration in mice , 2007, The EMBO journal.

[221]  H. Jongsma,et al.  Electrophysiological features of the mouse sinoatrial node in relation to connexin distribution. , 2001, Cardiovascular research.

[222]  H H Lu,et al.  Shifts in Pacemaker Dominance within the Sinoatrial Region of Cat and Rabbit Hearts Resulting from Increase of Extracellular Potassium , 1970, Circulation research.

[223]  W. Giles,et al.  Thyroid hormone regulates postnatal expression of transient K+ channel isoforms in rat ventricle. , 1997, The Journal of physiology.

[224]  H. Brokalaki,et al.  Fever and standard monitoring parameters of ICU patients: a descriptive study. , 2007, Intensive & critical care nursing.

[225]  L. Blatter,et al.  Intracellular Ca2+ release sparks atrial pacemaker activity. , 2001, News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society.

[226]  B. Heath,et al.  Modulation of the hyperpolarization-activated current (I(f)) by calcium and calmodulin in the guinea-pig sino-atrial node. , 2003, Cardiovascular research.

[227]  A. Levitzki Beta-adrenergic receptors and their mode of coupling to adenylate cyclase. , 1986, Physiological reviews.

[228]  J Jalife,et al.  Action Potential Characteristics and Arrhythmogenic Properties of the Cardiac Conduction System of the Murine Heart , 2001, Circulation research.

[229]  K. Willecke,et al.  Functional Properties of Mouse Connexin30.2 Expressed in the Conduction System of the Heart , 2005, Circulation research.

[230]  M. Boutjdir,et al.  Functional Basis of Sinus Bradycardia in Congenital Heart Block , 2004, Circulation research.

[231]  J. Nerbonne,et al.  Molecular physiology of cardiac repolarization. , 2005, Physiological reviews.

[232]  R. Robinson,et al.  Pacemaker current and automatic rhythms: toward a molecular understanding. , 2006, Handbook of experimental pharmacology.

[233]  Knut Holthoff,et al.  Absence epilepsy and sinus dysrhythmia in mice lacking the pacemaker channel HCN2 , 2003, The EMBO journal.

[234]  A. Noma,et al.  Slow current systems in the A-V node of the rabbit heart , 1980, Nature.

[235]  D. Allen,et al.  Fibroblasts modulate cardiomyocyte excitability: implications for cardiac gene therapy , 2006, Gene Therapy.

[236]  A. V. van Ginneken,et al.  Effects of delayed rectifier current blockade by E-4031 on impulse generation in single sinoatrial nodal myocytes of the rabbit. , 1995, Circulation research.

[237]  Mechanisms of impulse generation in isolated cells from the rabbit sinoatrial node. , 1989, Journal of molecular and cellular cardiology.

[238]  Å. Hjalmarson Significance of reduction in heart rate in cardiovascular disease. , 1998, Clinical cardiology.

[239]  E. Lakatta,et al.  Calcium Cycling Protein Density and Functional Importance to Automaticity of Isolated Sinoatrial Nodal Cells Are Independent of Cell Size , 2007, Circulation research.

[240]  G. Tseng,et al.  Multiple Types of Ca2+ Currents in Single Canine Purkinje Cells , 1989, Circulation research.

[241]  D DiFrancesco,et al.  From funny current to HCN channels: 20 years of excitation. , 2002, News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society.

[242]  K. Rhodes,et al.  Modulation of A-type potassium channels by a family of calcium sensors , 2000, Nature.

[243]  A. Noma,et al.  Distribution of the isoprenaline-induced chloride current in rabbit heart , 1992, Pflügers Archiv.

[244]  Henggui Zhang,et al.  Sinus node dysfunction following targeted disruption of the murine cardiac sodium channel gene Scn5a , 2005, The Journal of physiology.

[245]  Yoshihisa Kurachi,et al.  Action potential and membrane currents of single pacemaker cells of the rabbit heart , 1984, Pflügers Archiv.

[246]  S. Hosoda,et al.  Sodium‐‐potassium pump current in rabbit sino‐atrial node cells. , 1996, The Journal of physiology.

[247]  I. Hisatome,et al.  Effects of pacemaker currents on creation and modulation of human ventricular pacemaker: theoretical study with application to biological pacemaker engineering. , 2007, American journal of physiology. Heart and circulatory physiology.

[248]  M J Janse,et al.  Morphology and electrophysiology of the mammalian atrioventricular node. , 1988, Physiological reviews.

[249]  Henggui Zhang,et al.  Sustained Inward Current and Pacemaker Activity of Mammalian Sinoatrial Node , 2002, Journal of cardiovascular electrophysiology.

[250]  D. Clapham,et al.  GIRK4 Confers Appropriate Processing and Cell Surface Localization to G-protein-gated Potassium Channels* , 1999, The Journal of Biological Chemistry.

[251]  Akinori Noma,et al.  Voltage dependence of Na/K pump current in isolated heart cells , 1985, Nature.

[252]  R. Robinson,et al.  Na(+) current contribution to the diastolic depolarization in newborn rabbit SA node cells. , 2000, American journal of physiology. Heart and circulatory physiology.

[253]  Christopher S Oehmen,et al.  Mathematical Model of the Rapidly Activating Delayed Rectifier Potassium Current IKr in Rabbit Sinoatrial Node , 2002, Journal of cardiovascular electrophysiology.

[254]  M. N. Levy,et al.  Chronotropic responses to experimental ischemia of the canine sino auricular node. , 1976, Archives internationales de physiologie et de biochimie.

[255]  A Shrier,et al.  Electrophysiological properties of morphologically distinct cells isolated from the rabbit atrioventricular node. , 1996, The Journal of physiology.

[256]  H. Galbo,et al.  Simultaneous determinations of metabolic and hormonal responses, heart rate, temperature and oxygen uptake in running rats. , 1980, Acta physiologica Scandinavica.

[257]  J. Ross,et al.  A Defect in the Kv Channel-Interacting Protein 2 (KChIP2) Gene Leads to a Complete Loss of I to and Confers Susceptibility to Ventricular Tachycardia , 2001, Cell.

[258]  M. Boyett,et al.  Modulation of pacemaker activity of sinoatrial node cells by electrical load imposed by an atrial cell model. , 1995, The American journal of physiology.

[259]  M. Vornanen,et al.  Temperature acclimation modifies sinoatrial pacemaker mechanism of the rainbow trout heart. , 2007, American journal of physiology. Regulatory, integrative and comparative physiology.

[260]  M. Janse,et al.  Electrophysiological changes in heart failure and their relationship to arrhythmogenesis. , 2004, Cardiovascular research.

[261]  A. Caiazza,et al.  Is respiratory sinus arrhythmia a good index of cardiac vagal tone in exercise? , 1996, Journal of applied physiology.

[262]  Chien-Chang Chen,et al.  Abnormal coronary function in mice deficient in alpha1H T-type Ca2+ channels. , 2003, Science.

[263]  H Honjo,et al.  Variation in effects of Cs+, UL-FS-49, and ZD-7288 within sinoatrial node. , 1997, The American journal of physiology.

[264]  John G. L. Morris A biologist's physical chemistry , 1968 .

[265]  Jörg Striessnig,et al.  Voltage-dependent calcium channels and cardiac pacemaker activity: from ionic currents to genes. , 2006, Progress in biophysics and molecular biology.

[266]  G H Pollack,et al.  Threshold effects of acetylcholine on primary pacemaker cells of the rabbit sino-atrial node , 1985, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[267]  D. Terrar,et al.  Protein kinase C enhances the rapidly activating delayed rectifier potassium current, IKr, through a reduction in C‐type inactivation in guinea‐pig ventricular myocytes , 2000, The Journal of physiology.

[268]  L. Cribbs,et al.  Identification of a T-type Ca(2+) channel isoform in murine atrial myocytes (AT-1 cells) , 2000, Circulation research.

[269]  H. Strauss,et al.  Ionic current mechanisms generating vertebrate primary cardiac pacemaker activity at the single cell level: an integrative view. , 1992, Annual review of physiology.

[270]  Henry Eyring,et al.  The theory of rate processes in biology and medicine , 1974 .

[271]  W. Giles,et al.  Changes in membrane currents in bullfrog atrium produced by acetylcholine. , 1976, The Journal of physiology.

[272]  R B D'Agostino,et al.  Influence of heart rate on mortality among persons with hypertension: the Framingham Study. , 1993, American heart journal.

[273]  Harold V M van Rijen,et al.  Architectural and functional asymmetry of the His-Purkinje system of the murine heart. , 2004, Cardiovascular research.

[274]  D. DiFrancesco,et al.  Current-dependent Block of Rabbit Sino-Atrial Node If Channels by Ivabradine , 2002, The Journal of general physiology.

[275]  H. Duff,et al.  Selective Knockout of Mouse ERG1 B Potassium Channel Eliminates IKr in Adult Ventricular Myocytes and Elicits Episodes of Abrupt Sinus Bradycardia , 2003, Molecular and Cellular Biology.

[276]  Y Shinagawa,et al.  The sustained inward current and inward rectifier K+ current in pacemaker cells dissociated from rat sinoatrial node , 2000, The Journal of physiology.

[277]  Chun-feng Shang,et al.  Calcium influx through hyperpolarization-activated cation channels (I(h) channels) contributes to activity-evoked neuronal secretion. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[278]  K. Cooper Some responses of the cardiovascular system to heat and fever. , 1994, The Canadian journal of cardiology.

[279]  A E Becker,et al.  Functional and Morphological Organization of the Rabbit Sinus Node , 1980, Circulation research.

[280]  J. S. Gutkind,et al.  Angiotensin II binding sites in the conduction system of rat hearts. , 1987, The American journal of physiology.

[281]  J. Péglion,et al.  Stereospecific in vitro and in vivo effects of the new sinus node inhibitor (+)-S 16257. , 1997, European journal of pharmacology.

[282]  D. DiFrancesco Funny channels in the control of cardiac rhythm and mode of action of selective blockers. , 2006, Pharmacological research.

[283]  Yi‐Jen Chen,et al.  Mechanoelectrical feedback regulates the arrhythmogenic activity of pulmonary veins , 2006, Heart.

[284]  Eduardo Marbán,et al.  Functional role of inward rectifier current in heart probed by Kir2.1 overexpression and dominant-negative suppression. , 2003, The Journal of clinical investigation.

[285]  M. Yoshimura,et al.  Angiotensin II inhibition of L-type Ca2+ current in sinoatrial node cells of rabbits. , 1995, The American journal of physiology.

[286]  T. Opthof,et al.  Cav3.2 subunit underlies the functional T-type Ca2+ channel in murine hearts during the embryonic period. , 2004, American journal of physiology. Heart and circulatory physiology.

[287]  Yong Wang,et al.  Molecular Control of Cardiac Sodium Homeostasis in Health and Disease , 2006, Journal of cardiovascular electrophysiology.

[288]  M R Boyett,et al.  Correlation between electrical activity and the size of rabbit sino‐atrial node cells. , 1993, The Journal of physiology.

[289]  M. Boyett,et al.  Heterogeneous expression of the delayed‐rectifier K+ currents iK,r and iK,s in rabbit sinoatrial node cells , 2001, The Journal of physiology.

[290]  H. Brown Electrophysiology of the sinoatrial node. , 1982, Physiological reviews.

[291]  Marco Weiergräber,et al.  Ablation of Cav2.3 / E–type voltage–gated calcium channel results in cardiac arrhythmia and altered autonomic control within the murine cardiovascular system , 2004, Basic Research in Cardiology.

[292]  W. C. Randall,et al.  Nervous control of cardiovascular function , 1984 .

[293]  P. Sanders,et al.  Remodeling of Sinus Node Function in Patients With Congestive Heart Failure: Reduction in Sinus Node Reserve , 2004, Circulation.

[294]  Y. Zhang,et al.  Cloning and characterization of alpha1H from human heart, a member of the T-type Ca2+ channel gene family. , 1998, Circulation research.

[295]  D DiFrancesco,et al.  A TTX‐sensitive inward sodium current contributes to spontaneous activity in newborn rabbit sino‐atrial node cells. , 1996, The Journal of physiology.

[296]  R. Fischmeister,et al.  Muscarinic and β-adrenergic regulation of heart rate, force of contraction and calcium current is preserved in mice lacking endothelial nitric oxide synthase , 1999, Nature Medicine.

[297]  R Wilders,et al.  Spatial and functional relationship between myocytes and fibroblasts in the rabbit sinoatrial node. , 1992, Journal of molecular and cellular cardiology.

[298]  D. A. Lathrop,et al.  Vasoactive intestinal polypeptide facilitates atrioventricular nodal conduction and shortens atrial and ventricular refractory periods in conscious and anesthetized dogs. , 1990, Circulation research.

[299]  D. DiFrancesco,et al.  Localization of f-channels to caveolae mediates specific beta2-adrenergic receptor modulation of rate in sinoatrial myocytes. , 2007, Journal of molecular and cellular cardiology.

[300]  R B Robinson,et al.  HCN2 Overexpression in Newborn and Adult Ventricular Myocytes: Distinct Effects on Gating and Excitability , 2001, Circulation research.

[301]  W. Giles,et al.  Identification and properties of an ATP‐sensitive K+ current in rabbit sino‐atrial node pacemaker cells. , 1996, The Journal of physiology.

[302]  F. V. Van Capelle,et al.  Propagation through electrically coupled cells. How a small SA node drives a large atrium. , 1986, Biophysical journal.

[303]  Martin Biel,et al.  Two pacemaker channels from human heart with profoundly different activation kinetics , 1999, The EMBO journal.

[304]  T. N. James,et al.  Structure and function of the sinus node, AV node and his bundle of the human heart: part II--function. , 2003, Progress in cardiovascular diseases.

[305]  G. A. West,et al.  Effects of adenosine and adenine nucleotides on the atrioventricular node of isolated guinea pig hearts. , 1984, Circulation.

[306]  J. Le Guennec,et al.  Different effects of gadolinium on IKR, IKS and IK1 in guinea‐pig isolated ventricular myocytes , 1998, British journal of pharmacology.

[307]  W. Giles,et al.  Voltage clamp measurements of the hyperpolarization‐activated inward current I(f) in single cells from rabbit sino‐atrial node. , 1991, The Journal of physiology.

[308]  G. Anrep,et al.  The coronary circulation , 1929 .

[309]  D. Clapham,et al.  Structure, G Protein Activation, and Functional Relevance of the Cardiac G Protein‐Gated K+ Channel, IKACh , 1999, Annals of the New York Academy of Sciences.

[310]  Jörg Striessnig,et al.  Functional role of L-type Cav1.3 Ca2+ channels in cardiac pacemaker activity , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[311]  Alan Garny,et al.  Effects of mechanosensitive ion channels on ventricular electrophysiology: experimental and theoretical models , 2006, Experimental physiology.

[312]  D. R. Young,et al.  Body temperature and heat exchange during treadmill running in dogs. , 1959, Journal of applied physiology.

[313]  G. Mennessier,et al.  Molecular and functional properties of the human alpha(1G) subunit that forms T-type calcium channels. , 2000, The Journal of biological chemistry.

[314]  H. Jongsma,et al.  Cycle length dependence of the chronotropic effects of adrenaline, acetylcholine, Ca2+ and Mg2+ in the Guinea-pig sinoatrial node. , 1984, Journal of the autonomic nervous system.

[315]  A. Raes,et al.  Use‐Dependent Block of the Pacemaker Current If in Rabbit Sinoatrial Node Cells by Zatebradine (UL‐FS 49) On the Mode of Action of Sinus Node Inhibitors , 1993, Circulation.

[316]  D DiFrancesco,et al.  A model of cardiac electrical activity incorporating ionic pumps and concentration changes. , 1985, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[317]  J. Billette,et al.  Atrioventricular nodal activation during periodic premature stimulation of the atrium. , 1987, The American journal of physiology.

[318]  P. Larsen,et al.  Thyroid hormone regulates hyperpolarization-activated cyclic nucleotide-gated channel (HCN2) mRNA in the rat heart. , 1999, Circulation research.

[319]  C. Bolter,et al.  Influence of temperature and adrenergic stimulation on rat sinoatrial frequency. , 1988, The American journal of physiology.

[320]  M. Boyett,et al.  Sophisticated Architecture is Required for the Sinoatrial Node to Perform Its Normal Pacemaker Function , 2003, Journal of cardiovascular electrophysiology.

[321]  Ronald Wilders,et al.  Contribution of L-type Ca2+current to electrical activity in sinoatrial nodal myocytes of rabbits. , 1999, American journal of physiology. Heart and circulatory physiology.

[322]  Itsuo Kodama,et al.  Heterogeneity of 4-aminopyridine-sensitive current in rabbit sinoatrial node cells. , 1999, American journal of physiology. Heart and circulatory physiology.

[323]  M. Diaz,et al.  Integrative Analysis of Calcium Cycling in Cardiac Muscle , 2000, Circulation research.

[324]  R B Schuessler,et al.  Widespread distribution and rate differentiation of the atrial pacemaker complex. , 1980, The American journal of physiology.

[325]  H. Satoh Role of T-type Ca2+ channel inhibitors in the pacemaker depolarization in rabbit sino-atrial nodal cells. , 1995, General pharmacology.

[326]  M. Boutjdir,et al.  Novel Molecular Mechanism Involving &agr;1D (Cav1.3) L-Type Calcium Channel in Autoimmune-Associated Sinus Bradycardia , 2005, Circulation.

[327]  W. Catterall,et al.  An unexpected requirement for brain-type sodium channels for control of heart rate in the mouse sinoatrial node , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[328]  E. Neer,et al.  Impaired parasympathetic heart rate control in mice with a reduction of functional G protein βγ-subunits , 2002 .

[329]  W. H. Gaskell On the Innervation of the Heart, with especial reference to the Heart of the Tortoise , 1883, The Journal of physiology.

[330]  D. Terrar,et al.  Fundamental importance of Na+–Ca2+ exchange for the pacemaking mechanism in guinea‐pig sino‐atrial node , 2006, The Journal of physiology.

[331]  E. Lakatta,et al.  Sinoatrial Nodal Cell Ryanodine Receptor and Na + -Ca 2+ Exchanger: Molecular Partners in Pacemaker Regulation , 2001, Circulation research.

[332]  J. Billette What is the Atrioventricular Node? Some Clues in Sorting out its Structure‐Function Relationship , 2002, Journal of cardiovascular electrophysiology.

[333]  E. Perez-Reyes Molecular physiology of low-voltage-activated t-type calcium channels. , 2003, Physiological reviews.

[334]  M. Boyett,et al.  Organisation of the mouse sinoatrial node: structure and expression of HCN channels. , 2007, Cardiovascular research.

[335]  T. Iwamoto,et al.  Cardiac Na(+)-Ca(2+) exchange: molecular and pharmacological aspects. , 2001, Circulation research.

[336]  Michael R Rosen,et al.  Biological Pacemaker Implanted in Canine Left Bundle Branch Provides Ventricular Escape Rhythms That Have Physiologically Acceptable Rates , 2004, Circulation.

[337]  W. Giles,et al.  Cardiac Ion Channel Expression and Contractile Function in Mice with Deletion of Thyroid Hormone Receptor α or β1 , 2001 .

[338]  J. Houtkooper,et al.  Dependence of the chronotropic effects of calcium, magnesium and sodium on temperature and cycle length in isolated rabbit atria. , 1980, The Journal of pharmacology and experimental therapeutics.

[339]  A. Dart,et al.  If channel inhibitor ivabradine lowers heart rate in mice with enhanced sympathoadrenergic activities , 2004, British journal of pharmacology.

[340]  M. Boyett,et al.  Intracellular Ca2+ and pacemaking within the rabbit sinoatrial node: heterogeneity of role and control , 2004, The Journal of physiology.

[341]  H Honjo,et al.  Computer Three-Dimensional Reconstruction of the Sinoatrial Node , 2005, Circulation.

[342]  D. DiFrancesco,et al.  Muscarinic control of the hyperpolarization‐activated current (if) in rabbit sino‐atrial node myocytes. , 1988, The Journal of physiology.

[343]  G. Mennessier,et al.  Molecular and Functional Properties of the Human α1G Subunit That Forms T-type Calcium Channels* , 2000, The Journal of Biological Chemistry.

[344]  E. Accili,et al.  Activation of the hyperpolarization-activated current (if) in sino-atrial node myocytes of the rabbit by vasoactive intestinal peptide , 1996, Pflügers Archiv.

[345]  E. Accili,et al.  Separable Gating Mechanisms in a Mammalian Pacemaker Channel* , 2002, The Journal of Biological Chemistry.

[346]  A. Moorman,et al.  Tbx3 controls the sinoatrial node gene program and imposes pacemaker function on the atria. , 2007, Genes & development.

[347]  Ian E. Alexander,et al.  Fibroblasts Can Be Genetically Modified to Produce Excitable Cells Capable of Electrical Coupling , 2005, Circulation.

[348]  J Jalife,et al.  Visualization and functional characterization of the developing murine cardiac conduction system. , 2001, Development.

[349]  Chien-Chang Chen,et al.  Abnormal Coronary Function in Mice Deficient in α1H T-type Ca2+ Channels , 2003, Science.

[350]  D. Mckinnon,et al.  Distribution and prevalence of hyperpolarization-activated cation channel (HCN) mRNA expression in cardiac tissues. , 1999, Circulation research.

[351]  K. Beam,et al.  Restoration of excitation—contraction coupling and slow calcium current in dysgenic muscle by dihydropyridine receptor complementary DNA , 1988, Nature.

[352]  Ming Li,et al.  Convergent regulation of sodium channels by protein kinase C and cAMP-dependent protein kinase. , 1993, Science.

[353]  Stanley Nattel,et al.  Differential Distribution of Cardiac Ion Channel Expression as a Basis for Regional Specialization in Electrical Function , 2002, Circulation research.

[354]  M. Mangoni,et al.  Properties of the hyperpolarization-activated current (I(f)) in isolated mouse sino-atrial cells. , 2001, Cardiovascular research.

[355]  J. Lenfant,et al.  Activation of f‐channels by cAMP analogues in macropatches from rabbit sino‐atrial node myocytes , 1997, The Journal of physiology.

[356]  Stanley Nattel,et al.  Regional and tissue specific transcript signatures of ion channel genes in the non‐diseased human heart , 2007, The Journal of physiology.

[357]  Akinori Noma,et al.  Molecular Characterization of the Hyperpolarization-activated Cation Channel in Rabbit Heart Sinoatrial Node* , 1999, The Journal of Biological Chemistry.

[358]  E. Lakatta,et al.  Rhythmic Ryanodine Receptor Ca2+ Releases During Diastolic Depolarization of Sinoatrial Pacemaker Cells Do Not Require Membrane Depolarization , 2004, Circulation research.

[359]  A Calciati,et al.  Evidence for an intrinsic mechanism regulating heart rate variability in the transplanted and the intact heart during submaximal dynamic exercise? , 1990, Cardiovascular research.

[360]  Y. Li,et al.  Calcium influx through If channels in rat ventricular myocytes. , 2007, American journal of physiology. Cell physiology.

[361]  E. Neer,et al.  G alpha(o) is necessary for muscarinic regulation of Ca2+ channels in mouse heart. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[362]  B. Fleischmann,et al.  Functional expression and regulation of the hyperpolarization activated non‐selective cation current in embryonic stem cell‐derived cardiomyocytes , 2000, The Journal of physiology.

[363]  D. Noble,et al.  Requirement of neuronal‐ and cardiac‐type sodium channels for murine sinoatrial node pacemaking , 2004, The Journal of physiology.

[364]  Klaus A. Deck,et al.  Dehnungseffekte am spontanschlagenden, isolierten Sinusknoten , 1964, Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere.

[365]  B. Saltin,et al.  CARDIAC OUTPUT DURING SUBMAXIMAL AND MAXIMAL WORK. , 1964, Journal of applied physiology.

[366]  M. Biel,et al.  Dominant-Negative Suppression of HCN Channels Markedly Reduces the Native Pacemaker Current If and Undermines Spontaneous Beating of Neonatal Cardiomyocytes , 2003, Circulation.

[367]  M. Boyett,et al.  Computer simulation of the electrotonic modulation of pacemaker activity in the sinoatrial node by atrial muscle. , 1995, Journal of electrocardiology.

[368]  Itsuo Kodama,et al.  Heterogeneous Expression of Ca2+ Handling Proteins in Rabbit Sinoatrial Node , 2002, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[369]  J. Nerbonne Molecular basis of functional voltage‐gated K+ channel diversity in the mammalian myocardium , 2000, The Journal of physiology.

[370]  R Wilders,et al.  Pacemaker activity of the rabbit sinoatrial node. A comparison of mathematical models. , 1991, Biophysical journal.

[371]  D. Allen,et al.  Intracellular calcium and Na+‐Ca2+ exchange current in isolated toad pacemaker cells , 1998, The Journal of physiology.

[372]  L. Wang,et al.  Electrophysiological characterization of an alternatively processed ERG K+ channel in mouse and human hearts. , 1997, Circulation research.

[373]  W. Kannel,et al.  Changing epidemiological features of cardiac failure. , 1994, British heart journal.

[374]  Takashi Mikawa,et al.  Induction and patterning of the cardiac conduction system. , 2002, The International journal of developmental biology.

[375]  J. Lenfant,et al.  Characterization of an angiotensin-II-activated chloride current in rabbit sino-atrial cells , 1994, The Journal of Membrane Biology.

[376]  I. Briggs,et al.  ICI D7288, a Novel Sinoatrial Node Modulator , 1993, Journal of cardiovascular pharmacology.

[377]  D. Noble,et al.  Excitation-contraction coupling and extracellular calcium transients in rabbit atrium: reconstruction of basic cellular mechanisms , 1987, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[378]  P. Robberecht,et al.  The in vitro chronotropic and inotropic effects of vasoactive intestinal peptide (VIP) on the atria and ventricular papillary muscle from Cynomolgus monkey heart , 1984, Regulatory Peptides.

[379]  K. Kamiya,et al.  Regulation of Kv4.2 and Kv1.4 K+ channel expression by myocardial hypertrophic factors in cultured newborn rat ventricular cells. , 1998, Journal of molecular and cellular cardiology.

[380]  N. Klugbauer,et al.  Functional Embryonic Cardiomyocytes after Disruption of the L-type α1C (Ca v 1.2) Calcium Channel Gene in the Mouse* , 2000, The Journal of Biological Chemistry.

[381]  G. Anrep,et al.  The coronary circulation: II. The effect of changes of temperature and of heart rate. , 2022, The Journal of physiology.

[382]  P. Camelliti,et al.  Role of the 293b-sensitive, slowly activating delayed rectifier potassium current, i(Ks), in pacemaker activity of rabbit isolated sino-atrial node cells. , 2002, Cardiovascular research.

[383]  M. Fishman,et al.  Defective "pacemaker" current (Ih) in a zebrafish mutant with a slow heart rate. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[384]  S. Laniado,et al.  Electrophysiologic effects of adenosine-5'-triphosphate on atrioventricular reentrant tachycardia. , 1983, Circulation.

[385]  L. Hittinger,et al.  Contributions of heart rate and contractility to myocardial oxygen balance during exercise. , 2003, American journal of physiology. Heart and circulatory physiology.

[386]  Yelena Kryukova,et al.  MiRP1 Modulates HCN2 Channel Expression and Gating in Cardiac Myocytes* , 2004, Journal of Biological Chemistry.

[387]  H Zhang,et al.  Mathematical models of action potentials in the periphery and center of the rabbit sinoatrial node. , 2000, American journal of physiology. Heart and circulatory physiology.

[388]  P. Rorsman,et al.  Isoform-specific regulation of mood behavior and pancreatic beta cell and cardiovascular function by L-type Ca 2+ channels. , 2004, The Journal of clinical investigation.

[389]  J. B. Preston,et al.  Physiologic Evidence for a Dual A‐V Transmission System , 1956, Circulation research.

[390]  G. Hirst,et al.  Sympathetic and parasympathetic neuromuscular junctions in the guinea-pig sino-atrial node. , 1993, Journal of the autonomic nervous system.

[391]  Annalisa Bucchi,et al.  Physiology and pharmacology of the cardiac pacemaker ("funny") current. , 2005, Pharmacology & therapeutics.

[392]  Mark E. Anderson,et al.  Atrial Fibrillation in KCNE1-Null Mice , 2005, Circulation research.

[393]  Ronald Wilders,et al.  Computer modelling of the sinoatrial node , 2007, Medical & Biological Engineering & Computing.

[394]  Junyuan Gao,et al.  Human Mesenchymal Stem Cells as a Gene Delivery System to Create Cardiac Pacemakers , 2004, Circulation research.

[395]  R. Cappato,et al.  Role of sinus node artery disease in sick sinus syndrome in inferior wall acute myocardial infarction. , 1991, The American journal of cardiology.

[396]  Peter Kohl,et al.  Species‐ and Preparation‐Dependence of Stretch Effects on Sino‐Atrial Node Pacemaking , 2005, Annals of the New York Academy of Sciences.

[397]  F. I. Bonke,et al.  Pacemaker shift in the sino-atrial node during vagal stimulation , 2004, Pflügers Archiv.

[398]  F. Hofmann,et al.  Pacemaker channels and sinus node arrhythmia. , 2004, Trends in cardiovascular medicine.

[399]  Y. Rudy,et al.  Basic mechanisms of cardiac impulse propagation and associated arrhythmias. , 2004, Physiological reviews.

[400]  Maurits A. Allessie,et al.  The influence of the atrial myocardium on impulse formation in the rabbit sinus node , 1987, Pflügers Archiv.

[401]  M. Vassalle,et al.  Mechanisms of suppression and initiation of pacemaker activity in guinea-pig sino-atrial node superfused in high [K+]o. , 1997, Journal of molecular and cellular cardiology.

[402]  H. C. Hartzell,et al.  Regulation of cardiac ion channels by catecholamines, acetylcholine and second messenger systems. , 1988, Progress in biophysics and molecular biology.

[403]  J. Nerbonne,et al.  Role of Heteromultimers in the Generation of Myocardial Transient Outward K+ Currents , 2002, Circulation research.

[404]  H Honjo,et al.  The sinoatrial node, a heterogeneous pacemaker structure. , 2000, Cardiovascular research.

[405]  Y. Rudy,et al.  Mechanism of pacemaking in I(K1)-downregulated myocytes. , 2003, Circulation research.

[406]  John W. Clark,et al.  Parasympathetic modulation of sinoatrial node pacemaker activity in rabbit heart: a unifying model. , 1999, American journal of physiology. Heart and circulatory physiology.

[407]  G. Lamas,et al.  The mode selection trial (MOST) in sinus node dysfunction: design, rationale, and baseline characteristics of the first 1000 patients. , 2000, American heart journal.

[408]  D. Shah,et al.  Pseudo Sinus Rhythm Originating from the Left Superior Pulmonary Vein in a Patient with Paroxysmal Atrial Fibrillation , 2001, Journal of cardiovascular electrophysiology.

[409]  D. Rubenstein,et al.  Mechanisms of automaticity in subsidiary pacemakers from cat right atrium. , 1989, Circulation research.

[410]  C. Bolter,et al.  Maximum heart rate responses to exercise and isoproterenol in the trained rat. , 1988, The American journal of physiology.

[411]  C. January,et al.  Characteristics of L- and T-type Ca2+ currents in canine cardiac Purkinje cells. , 1989, The American journal of physiology.

[412]  I. Cohen,et al.  Actions of vasoactive intestinal peptide and neuropeptide Y on the pacemaker current in canine Purkinje fibers. , 1994, Circulation research.

[413]  Wei Wang,et al.  Adenoviral gene transfer of HCN4 creates a genetic pacemaker in pigs with complete atrioventricular block. , 2007, Life sciences.

[414]  T. Opthof,et al.  The normal range and determinants of the intrinsic heart rate in man. , 2000, Cardiovascular research.

[415]  I R Efimov,et al.  High-resolution, three-dimensional fluorescent imaging reveals multilayer conduction pattern in the atrioventricular node. , 1998, Circulation.

[416]  J. Nerbonne,et al.  Distribution, splicing and glucocorticoid-induced expression of cardiac alpha 1C and alpha 1D voltage-gated Ca2+ channel mRNAs. , 1997, Journal of molecular and cellular cardiology.

[417]  Alexander Ghanem,et al.  Connexin30.2 containing gap junction channels decelerate impulse propagation through the atrioventricular node. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[418]  D. R. Wagoner,et al.  Mechanosensitive gating of atrial ATP-sensitive potassium channels. , 1993 .

[419]  D. Noble,et al.  Adrenaline: Mechanism of Action on the Pacemaker Potential in Cardiac Purkinje Fibers , 1968, Science.

[420]  O. Hutter,et al.  VAGAL AND SYMPATHETIC EFFECTS ON THE PACEMAKER FIBERS IN THE SINUS VENOSUS OF THE HEART , 1956, The Journal of general physiology.

[421]  G. Breithardt,et al.  Altered sinus nodal and atrioventricular nodal function in freely moving mice overexpressing the A1 adenosine receptor. , 2003, American journal of physiology. Heart and circulatory physiology.

[422]  N. Klugbauer,et al.  Functional embryonic cardiomyocytes after disruption of the L-type alpha1C (Cav1.2) calcium channel gene in the mouse. , 2000, The Journal of biological chemistry.

[423]  M. Vassalle Analysis of cardiac pacemaker potential using a "voltage clamp" technique. , 1966, The American journal of physiology.

[424]  D. Beech,et al.  TrpC1 Is a Membrane-Spanning Subunit of Store-Operated Ca2+ Channels in Native Vascular Smooth Muscle Cells , 2001, Circulation research.

[425]  R. Abdulla Electrophysiology of the Heart , 1997, Pediatric Cardiology.

[426]  J. Nerbonne,et al.  Genetic Manipulation of Cardiac K+ Channel Function in Mice: What Have We Learned, and Where Do We Go From Here? , 2001, Circulation research.

[427]  T. Yuzyuk,et al.  Local cholinergic suppression of pacemaker activity in the rabbit sinoatrial node. , 1998, Journal of cardiovascular pharmacology.

[428]  M. Moffat Concentration-dependent effects of prostacyclin on the response of the isolated guinea pig heart to ischemia and reperfusion: possible involvement of the slow inward current. , 1987, The Journal of pharmacology and experimental therapeutics.

[429]  P. Kirchhof,et al.  Cardiac pacemaker function of HCN4 channels in mice is confined to embryonic development and requires cyclic AMP , 2008, The EMBO journal.

[430]  D. Chamberlain,et al.  Sinus node disease affecting both parents and both children. , 1979, European journal of cardiology.

[431]  M. Mazzanti,et al.  Properties of the hyperpolarizing‐activated current (if) in cells isolated from the rabbit sino‐atrial node. , 1986, The Journal of physiology.

[432]  Aaron M. Beedle,et al.  The CACNA1F Gene Encodes an L-Type Calcium Channel with Unique Biophysical Properties and Tissue Distribution , 2004, The Journal of Neuroscience.

[433]  A. Hamsten,et al.  Minimum heart rate and coronary atherosclerosis: independent relations to global severity and rate of progression of angiographic lesions in men with myocardial infarction at a young age. , 1992, American heart journal.

[434]  Denis Noble,et al.  Dimensionality in cardiac modelling. , 2005, Progress in biophysics and molecular biology.

[435]  A. V. van Ginneken,et al.  Calcium-activated Cl(-) current contributes to delayed afterdepolarizations in single Purkinje and ventricular myocytes. , 2000, Circulation.

[436]  H. Lehmann,et al.  Familial sinus node dysfunction with autosomal dominant inheritance. , 1978, British heart journal.

[437]  T. Mcdonald,et al.  Regulation and modulation of calcium channels in cardiac, skeletal, and smooth muscle cells. , 1994, Physiological reviews.

[438]  H. Cheng,et al.  Sinoatrial node pacemaker activity requires Ca(2+)/calmodulin-dependent protein kinase II activation. , 2000, Circulation research.

[439]  G. Berkowitz,et al.  Characterization of a TTX-sensitive Na+ current in pacemaker cells isolated from rabbit sinoatrial node. , 1996, The American journal of physiology.

[440]  Tobias Opthof,et al.  The mammalian sinoatrial node , 1988, Cardiovascular Drugs and Therapy.

[441]  V. Jacquemet Pacemaker activity resulting from the coupling with nonexcitable cells. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[442]  Halina Dobrzynski,et al.  Differential Expression of Ion Channel Transcripts in Atrial Muscle and Sinoatrial Node in Rabbit , 2006, Circulation research.

[443]  S. Ebert,et al.  Catecholamines and development of cardiac pacemaking: an intrinsically intimate relationship. , 2006, Cardiovascular research.

[444]  Mitsuru Yamamoto,et al.  Pacing-Induced Spontaneous Activity in Myocardial Sleeves of Pulmonary Veins After Treatment With Ryanodine , 2003, Circulation.

[445]  J. Nerbonne,et al.  Expression of Distinct ERG Proteins in Rat, Mouse, and Human Heart , 2000, The Journal of Biological Chemistry.

[446]  H Honjo,et al.  Regional differences in the role of the Ca2+ and Na+ currents in pacemaker activity in the sinoatrial node. , 1997, The American journal of physiology.

[447]  I. Seyama Characteristics of the anion channel in the sino‐atrial node cell of the rabbit. , 1979, The Journal of physiology.

[448]  C. Luo,et al.  A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes. , 1994, Circulation research.

[449]  A. D. Jose,et al.  The effects of exercise and changes in body temperature on the intrinsic heart rate in man. , 1970, American heart journal.

[450]  N. Klugbauer,et al.  Regulation of the calcium channel alpha(1G) subunit by divalent cations and organic blockers. , 2000, Neuropharmacology.

[451]  Calum A. MacRae,et al.  Drugs That Induce Repolarization Abnormalities Cause Bradycardia in Zebrafish , 2003, Circulation.

[452]  R. Kumar,et al.  Electrical interactions between a rabbit atrial cell and a nodal cell model. , 1998, American journal of physiology. Heart and circulatory physiology.

[453]  S. Nattel,et al.  Comparison of Ion-Channel Subunit Expression in Canine Cardiac Purkinje Fibers and Ventricular Muscle , 2002, Circulation research.

[454]  Mark E. Anderson,et al.  Calmodulin kinase determines calcium-dependent facilitation of L-type calcium channels , 2000, Nature Cell Biology.

[455]  M. Yamada The role of muscarinic K(+) channels in the negative chronotropic effect of a muscarinic agonist. , 2002, The Journal of pharmacology and experimental therapeutics.

[456]  J. Engel,et al.  Congenital Deafness and Sinoatrial Node Dysfunction in Mice Lacking Class D L-Type Ca2+ Channels , 2000, Cell.

[457]  T. Hökfelt,et al.  Multiple co-existence of peptides and classical transmitters in peripheral autonomic and sensory neurons--functional and pharmacological implications. , 1986, Progress in brain research.

[458]  J. Dimarco,et al.  The evaluation and management of bradycardia. , 2000, The New England journal of medicine.

[459]  D. Clapham,et al.  Abnormal Heart Rate Regulation in GIRK4 Knockout Mice , 1998, Neuron.

[460]  D DiFrancesco,et al.  A new interpretation of the pace‐maker current in calf Purkinje fibres. , 1981, The Journal of physiology.

[461]  J. Toyama,et al.  Roles of Cl- channels and Ca2+ mobilization in stretch-induced increase of SA node pacemaker activity. , 1996, The American journal of physiology.

[462]  Ronald Wilders,et al.  Ca2+‐activated Cl− current in rabbit sinoatrial node cells , 2002, The Journal of physiology.

[463]  N. Hagiwara,et al.  Contribution of two types of calcium currents to the pacemaker potentials of rabbit sino‐atrial node cells. , 1988, The Journal of physiology.

[464]  H Honjo,et al.  Characterisation of the transient outward K+ current in rabbit sinoatrial node cells. , 2000, Cardiovascular research.

[465]  N. Takasu [Thyroid hormone and the cardiovascular system]. , 2006, Nihon rinsho. Japanese journal of clinical medicine.

[466]  E. Neer,et al.  Impaired parasympathetic heart rate control in mice with a reduction of functional G protein betagamma-subunits. , 2002, American journal of physiology. Heart and circulatory physiology.

[467]  A M Wobus,et al.  Cardiomyocytes differentiated in vitro from embryonic stem cells developmentally express cardiac-specific genes and ionic currents. , 1994, Circulation research.

[468]  W. Giles,et al.  An obligatory role for nitric oxide in autonomic control of mammalian heart rate. , 1994, The Journal of physiology.

[469]  J. Nerbonne,et al.  Microarray Analysis Reveals Complex Remodeling of Cardiac Ion Channel Expression With Altered Thyroid Status: Relation to Cellular and Integrated Electrophysiology , 2003, Circulation research.

[470]  I. Efimov,et al.  Fluorescent Imaging of a Dual-Pathway Atrioventricular-Nodal Conduction System , 2001, Circulation research.

[471]  B. Saltin,et al.  Esophageal, rectal, and muscle temperature during exercise. , 1966, Journal of applied physiology.

[472]  Zhengfeng Zhou,et al.  Na(+)‐Ca2+ exchange current in latent pacemaker cells isolated from cat right atrium. , 1993, The Journal of physiology.

[473]  A. Moorman,et al.  Cardiovascular development: towards biomedical applicability , 2007, Cellular and Molecular Life Sciences.

[474]  H. Morita,et al.  Functional Characterization of a Trafficking-defective HCN4 Mutation, D553N, Associated with Cardiac Arrhythmia* , 2004, Journal of Biological Chemistry.

[475]  A. Noma,et al.  Contribution of an electrogenic sodium pump to the membrane potential in rabbit sinoatrial node cells , 1975, Pflügers Archiv.

[476]  M. Hakumäki Seventy years of the Bainbridge reflex. , 1987, Acta physiologica Scandinavica.

[477]  P. van Bogaert,et al.  Use-dependent blockade of cardiac pacemaker current (If) by cilobradine and zatebradine. , 2003, European journal of pharmacology.

[478]  W. Rottbauer,et al.  Targeted Mutation Reveals Essential Functions of the Homeodomain Transcription Factor Shox2 in Sinoatrial and Pacemaking Development , 2007, Circulation.

[479]  T. Opthof,et al.  Molecular aspects of adrenergic modulation of cardiac L-type Ca2+ channels. , 2005, Cardiovascular research.

[480]  Jörg Hüser,et al.  Intracellular Ca2+ release contributes to automaticity in cat atrial pacemaker cells , 2000, The Journal of physiology.

[481]  Edward G Lakatta,et al.  &bgr;-Adrenergic Stimulation Modulates Ryanodine Receptor Ca2+ Release During Diastolic Depolarization to Accelerate Pacemaker Activity in Rabbit Sinoatrial Nodal Cells , 2002, Circulation research.

[482]  T. Iwamoto,et al.  Cardiac Na+-Ca2+ Exchange Molecular and Pharmacological Aspects , 2001 .

[483]  S P Glasser,et al.  Subsets of ambulatory myocardial ischemia based on heart rate activity. Circadian distribution and response to anti-ischemic medication. The Angina and Silent Ischemia Study Group (ASIS) , 1993, Circulation.

[484]  J. Striessnig,et al.  Disturbed atrio-ventricular conduction and normal contractile function in isolated hearts from Cav1.3-knockout mice , 2004, Naunyn-Schmiedeberg's Archives of Pharmacology.

[485]  Michael R Rosen,et al.  Expression and Function of a Biological Pacemaker in Canine Heart , 2003, Circulation.

[486]  F. Edwards,et al.  Transmission by post-ganglionic axons of the autonomic nervous system: The importance of the specialized neuroeffector junction , 1996, Neuroscience.

[487]  Sheryl E. Koch,et al.  Functional disorders of the sympathetic nervous system in mice lacking the α1B subunit (Cav 2.2) of N-type calcium channels , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[488]  M. N. Levy Brief Reviews: Sympathetic-Parasympathetic Interactions in the Heart , 1971, Circulation research.

[489]  M. Biel,et al.  Structure and Function of Cardiac Pacemaker Channels , 1999, Cellular Physiology and Biochemistry.

[490]  M. Kohlhardt,et al.  Alterations of the excitation process of the sinoatrial pacemaker cell in the presence of anoxia and metabolic inhibitors. , 1977, Journal of molecular and cellular cardiology.

[491]  J C Denyer,et al.  Rabbit sino‐atrial node cells: isolation and electrophysiological properties. , 1990, The Journal of physiology.

[492]  W. Catterall,et al.  Modulation of cardiac Na+ channels expressed in a mammalian cell line and in ventricular myocytes by protein kinase C. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[493]  D. DiFrancesco,et al.  Heteromeric HCN1–HCN4 Channels: A Comparison with Native Pacemaker Channels from the Rabbit Sinoatrial Node , 2003, The Journal of physiology.

[494]  William A. Catterall,et al.  International Union of Pharmacology. XL. Compendium of Voltage-Gated Ion Channels: Calcium Channels , 2003, Pharmacological Reviews.

[495]  V. Shusterman,et al.  Targeted Replacement of Kv1.5 in the Mouse Leads to Loss of the 4-Aminopyridine-Sensitive Component of IK,slow and Resistance to Drug-Induced QT Prolongation , 2001, Circulation research.

[496]  J. Lenfant,et al.  Thyroid hormone increases the conductance density of f-channels in rabbit sino-atrial node cells. , 2000, Receptors & channels.

[497]  K M Baldwin,et al.  Cardiovascular response to treadmill exercise in untrained rats. , 1981, Journal of applied physiology: respiratory, environmental and exercise physiology.

[498]  C. Lau,et al.  Bioartificial Sinus Node Constructed via In Vivo Gene Transfer of an Engineered Pacemaker HCN Channel Reduces the Dependence on Electronic Pacemaker in a Sick-Sinus Syndrome Model , 2006, Circulation.

[499]  N. Akaike,et al.  Electrical activity of sinoatrial node cells of the rabbit surviving a long exposure to cold Tyrode's solution. , 1977, Circulation research.

[500]  A Keith,et al.  The Form and Nature of the Muscular Connections between the Primary Divisions of the Vertebrate Heart. , 1907, Journal of anatomy and physiology.

[501]  T. Isono,et al.  Rapidly and slowly activating components of delayed rectifier K+ current in guinea‐pig sino‐atrial node pacemaker cells , 2002, The Journal of physiology.

[502]  I. LeGrice,et al.  Fibroblast Network in Rabbit Sinoatrial Node: Structural and Functional Identification of Homogeneous and Heterogeneous Cell Coupling , 2004, Circulation research.

[503]  R. Robinson,et al.  Functional comparison of HCN isoforms expressed in ventricular and HEK 293 cells , 2002, Pflügers Archiv.

[504]  D. Allen,et al.  The distribution of calcium in toad cardiac pacemaker cells during spontaneous firing , 2000, Pflügers Archiv.

[505]  T Opthof,et al.  Functional morphology of the mammalian sinuatrial node. , 1987, European heart journal.

[506]  A. Moorman,et al.  Transgenic mice overexpressing human KvLQT1 dominant-negative isoform. Part II: Pharmacological profile. , 2001, Cardiovascular research.

[507]  A. George,et al.  Congenital sick sinus syndrome caused by recessive mutations in the cardiac sodium channel gene (SCN5A). , 2003, The Journal of clinical investigation.

[508]  R. Longhi,et al.  Hyperpolarization-activated Cyclic Nucleotide-gated Channel 1 Is a Molecular Determinant of the Cardiac Pacemaker Current I f * , 2001, The Journal of Biological Chemistry.

[509]  D. Rigel Effects of neuropeptides on heart rate in dogs: comparison of VIP, PHI, NPY, CGRP, and NT. , 1988, The American journal of physiology.

[510]  M. Eldar,et al.  Point Mutation in the HCN4 Cardiac Ion Channel Pore Affecting Synthesis, Trafficking, and Functional Expression Is Associated With Familial Asymptomatic Sinus Bradycardia , 2007, Circulation.

[511]  K. Beam,et al.  Cardiac-type excitation-contraction coupling in dysgenic skeletal muscle injected with cardiac dihydropyridine receptor cDNA , 1990, Nature.

[512]  J. Nerbonne,et al.  Distribution, Splicing and Glucocorticoid-Induced Expression of Cardiacα1Candα1DVoltage-gated Ca2+Channel mRNAs , 1997 .

[513]  G. Mennessier,et al.  Specific Properties of T-type Calcium Channels Generated by the Human α1I Subunit* , 2000, The Journal of Biological Chemistry.

[514]  U. Kaupp,et al.  Molecular diversity of pacemaker ion channels. , 2001, Annual review of physiology.

[515]  I. Hisatome,et al.  Dynamical mechanisms of pacemaker generation in IK1-downregulated human ventricular myocytes: insights from bifurcation analyses of a mathematical model. , 2005, Biophysical journal.

[516]  Mangrum Jm,et al.  The Evaluation and Management of Bradycardia , 2000 .

[517]  F. Klocke,et al.  Oxygen Cost of Electrical Activation of the Heart , 1966, Circulation research.

[518]  A. Noma,et al.  Does the “pacemaker current” generate the diastolic depolarization in the rabbit SA node cells? , 1983, Pflügers Archiv.

[519]  D. DiFrancesco,et al.  Acetylcholine reverses effects of beta-agonists on pacemaker current in canine cardiac Purkinje fibers but has no direct action. A difference between primary and secondary pacemakers. , 1990, Circulation research.

[520]  R. Robinson,et al.  Autonomic modulation of heart rate: pitfalls of nonselective channel blockade. , 2003, American Journal of Physiology. Heart and Circulatory Physiology.

[521]  M. Boyett,et al.  Regional differences in effects of 4-aminopyridine within the sinoatrial node. , 1998, American journal of physiology. Heart and circulatory physiology.

[522]  G. Callewaert,et al.  Single cardiac Purkinje cells: general electrophysiology and voltage‐clamp analysis of the pace‐maker current. , 1984, The Journal of physiology.

[523]  J. Lenfant,et al.  Evidence for two types of calcium currents in frog cardiac sinus venosus cells , 1991, Pflügers Archiv.

[524]  P. Hunter,et al.  One‐Dimensional Rabbit Sinoatrial Node Models: , 2003, Journal of cardiovascular electrophysiology.

[525]  T. Yamamoto,et al.  Regulation by acetylcholine of Ca2+ current in rabbit atrioventricular node cells. , 1996, The American journal of physiology.

[526]  Michael R Rosen,et al.  I(f) and the biological pacemaker. , 2006, Pharmacological research.

[527]  Ira S. Cohen,et al.  MinK-Related Peptide 1 , 2001 .

[528]  D DiFrancesco,et al.  L-type but not T-type calcium current changes during postnatal development in rabbit sinoatrial node. , 2001, American journal of physiology. Heart and circulatory physiology.

[529]  L. Bouman,et al.  Age-related changes in structure and relative collagen content of the human and feline sinoatrial node. A comparative study. , 1995, European heart journal.

[530]  M. Epstein,et al.  Effects of chronic hypoxia during maturation on the negative chronotropic effect of [H+] on the rabbit sino-atrial node. , 1991, Biology of the neonate.

[531]  M. Boyett,et al.  Downward gradient in action potential duration along conduction path in and around the sinoatrial node. , 1999, The American journal of physiology.

[532]  R S Paffenbarger,et al.  Heart rate and cardiovascular mortality: the Framingham Study. , 1987, American heart journal.

[533]  D. Noble,et al.  A model of sino-atrial node electrical activity based on a modification of the DiFrancesco-Noble (1984) equations , 1984, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[534]  R. Kass,et al.  Delayed rectification in single cells isolated from guinea pig sinoatrial node. , 1992, The American journal of physiology.

[535]  Michel Haïssaguerre,et al.  Role of Purkinje conducting system in triggering of idiopathic ventricular fibrillation , 2002, The Lancet.

[536]  H. Jongsma,et al.  Differences between rabbit sinoatrial pacemakers in their response to Mg, Ca and temperature. , 1983, Cardiovascular research.

[537]  Dario DiFrancesco,et al.  Modulation of rate by autonomic agonists in SAN cells involves changes in diastolic depolarization and the pacemaker current. , 2007, Journal of molecular and cellular cardiology.

[538]  H Honjo,et al.  Regional differences in effects of E-4031 within the sinoatrial node. , 1999, American journal of physiology. Heart and circulatory physiology.

[539]  G. Maccaferri,et al.  Intracellular calcium does not directly modulate cardiac pacemaker (if) channels , 1991, Pflügers Archiv.

[540]  A. Mugelli,et al.  I(f) in non-pacemaker cells: role and pharmacological implications. , 2006, Pharmacological research.

[541]  M. Goethals,et al.  Pharmacological influence of specific bradycardic agents on the pacemaker current of sheep cardiac Purkinje fibres. A comparison between three different molecules. , 1987, European heart journal.

[542]  Antonio Zaza,et al.  Ionic currents during sustained pacemaker activity in rabbit sino‐atrial myocytes , 1997, The Journal of physiology.

[543]  G. A. West,et al.  Sinus slowing and pacemaker shift caused by adenosine in rabbit SA node , 2004, Pflügers Archiv.

[544]  M. Goethals,et al.  Use- and frequency-dependent blockade by UL-FS 49 of the if pacemaker current in sheep cardiac Purkinje fibres. , 1990, European journal of pharmacology.

[545]  D DiFrancesco,et al.  Muscarinic modulation of cardiac rate at low acetylcholine concentrations. , 1989, Science.

[546]  R. Kloner,et al.  Elevated body temperature during myocardial ischemia/reperfusion exacerbates necrosis and worsens no-reflow , 2002, Coronary artery disease.

[547]  A. Coulombe,et al.  Effect of tetrodotoxin on action potentials of the conducting system in the dog heart. , 1979, The American journal of physiology.

[548]  Zhao Zhang,et al.  Functional Roles of Ca(v)1.3 (alpha(1D)) calcium channel in sinoatrial nodes: insight gained using gene-targeted null mutant mice. , 2002, Circulation research.

[549]  M. Rosen,et al.  Positive chronotropic actions of parathyroid hormone and parathyroid hormone-related peptide are associated with increases in the current, I(f), and the slope of the pacemaker potential. , 1997, Circulation.

[550]  Y Shinagawa,et al.  Sustained inward current during pacemaker depolarization in mammalian sinoatrial node cells. , 2000, Circulation research.

[551]  G. Pollack Cardiac pacemaking: an obligatory role of catecholamines? , 1977, Science.

[552]  Yoshihisa Kurachi,et al.  Electrogenic sodium pump in rabbit atrio-ventricular node cell , 1981, Pflügers Archiv.

[553]  M. Weiergräber,et al.  Arrhythmia in Isolated Prenatal Hearts after Ablation of the Cav2.3 (α1E) Subunit of Voltage-gated Ca2+ Channels , 2004, Cellular Physiology and Biochemistry.

[554]  A Noma,et al.  Existence of a low-threshold and sustained inward current in rabbit atrio-ventricular node cells. , 1997, The Japanese journal of physiology.

[555]  A. Iwasa,et al.  NO is involved in MCh-induced accentuated antagonism via type II PDE in the canine blood-perfused SA node. , 2000, American journal of physiology. Heart and circulatory physiology.

[556]  Céline Marionneau,et al.  Chronic heart rate reduction remodels ion channel transcripts in the mouse sinoatrial node but not in the ventricle. , 2005, Physiological genomics.

[557]  O Gryshchenko,et al.  Ischemia alters the electrical activity of pacemaker cells isolated from the rabbit sinoatrial node. , 2002, American journal of physiology. Heart and circulatory physiology.

[558]  D DiFrancesco,et al.  The contribution of the ‘pacemaker’ current (if) to generation of spontaneous activity in rabbit sino‐atrial node myocytes. , 1991, The Journal of physiology.

[559]  D DiFrancesco,et al.  Pacemaker mechanisms in cardiac tissue. , 1993, Annual review of physiology.

[560]  Jennifer W Mitchell,et al.  Identification of the calcium channel alpha 1E (Ca(v)2.3) isoform expressed in atrial myocytes. , 2002, Biochimica et biophysica acta.

[561]  A. Moorman,et al.  Cardiac chamber formation: development, genes, and evolution. , 2003, Physiological reviews.

[562]  J K Triedman,et al.  Phenotypic screening for heart rate variability in the mouse. , 2000, American journal of physiology. Heart and circulatory physiology.

[563]  F A Bainbridge,et al.  The influence of venous filling upon the rate of the heart , 1915, The Journal of physiology.

[564]  Mark E. Anderson,et al.  Cardiac ion channels. , 2002, Annual review of physiology.

[565]  P. Huang,et al.  Muscarinic cholinergic regulation of cardiac myocyte ICa-L is absent in mice with targeted disruption of endothelial nitric oxide synthase. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[566]  D. A. Lathrop,et al.  Vasoactive intestinal polypeptide enhances automaticity of supraventricular pacemakers in anesthetized dogs. , 1991, The American journal of physiology.

[567]  D. Bers Cardiac excitation–contraction coupling , 2002, Nature.

[568]  W. Giles,et al.  Ionic mechanisms of adenosine actions in pacemaker cells from rabbit heart. , 1988, The Journal of physiology.

[569]  D DiFrancesco,et al.  Properties and modulation of If in newborn versus adult cardiac SA node. , 1997, The American journal of physiology.

[570]  Eric R Kandel,et al.  Identification of a Gene Encoding a Hyperpolarization-Activated Pacemaker Channel of Brain , 1998, Cell.