Periodic and decaying solutions in discrete nonlinear Schrödinger with saturable nonlinearity
暂无分享,去创建一个
[1] Z. Nehari. On a class of nonlinear second-order differential equations , 1960 .
[2] Richard H. Enns,et al. Quasi-soliton and other behaviour of the nonlinear cubic-quintic Schrodinger equation , 1986 .
[3] P. Rabinowitz. Minimax methods in critical point theory with applications to differential equations , 1986 .
[4] Charles Alexander Stuart,et al. Guidance properties of nonlinear planar waveguides , 1993 .
[5] A. Snyder,et al. Collisions, steering, and guidance with spatial solitons. , 1993, Optics letters.
[6] W. Krolikowski,et al. Fusion and birth of spatial solitons upon collision. , 1997, Optics letters.
[7] Kenneth Steiglitz,et al. Information transfer between solitary waves in the saturable Schrödinger equation , 1997 .
[8] J. S. Aitchison,et al. Discrete Spatial Optical Solitons in Waveguide Arrays , 1998 .
[9] G. Teschl. Jacobi Operators and Completely Integrable Nonlinear Lattices , 1999 .
[10] Yaron Silberberg,et al. Discretizing light behaviour in linear and nonlinear waveguide lattices , 2003, Nature.
[11] B. Luther-Davies,et al. Photorefractive solitons , 2003 .
[12] A. Pankov. Periodic Nonlinear Schrödinger Equation with Application to Photonic Crystals , 2004 .
[13] Exact solutions of the saturable discrete nonlinear Schrödinger equation , 2004, nlin/0409057.
[14] Alexander Pankov,et al. Travelling Waves And Periodic Oscillations in Fermi-pasta-ulam Lattices , 2005 .
[15] Gap solitons in periodic discrete nonlinear Schrödinger equations , 2005, nlin/0502043.
[16] ©1981 American Mathematical Society 0002-9904/81 /0000-0121 /$04.00 , 2022 .