Periodic and decaying solutions in discrete nonlinear Schrödinger with saturable nonlinearity

We demonstrate the existence of solutions in the discrete nonlinear Schrödinger equation (DNLS) with saturable nonlinearity. We consider two types of solutions to DNLS periodic and vanishing at infinity. Calculus of variations and the Nehari manifolds are employed to establish the existence of these solutions. We present some extensions of our results, combining the Nehari manifold approach and the Mountain Pass argument.

[1]  Z. Nehari On a class of nonlinear second-order differential equations , 1960 .

[2]  Richard H. Enns,et al.  Quasi-soliton and other behaviour of the nonlinear cubic-quintic Schrodinger equation , 1986 .

[3]  P. Rabinowitz Minimax methods in critical point theory with applications to differential equations , 1986 .

[4]  Charles Alexander Stuart,et al.  Guidance properties of nonlinear planar waveguides , 1993 .

[5]  A. Snyder,et al.  Collisions, steering, and guidance with spatial solitons. , 1993, Optics letters.

[6]  W. Krolikowski,et al.  Fusion and birth of spatial solitons upon collision. , 1997, Optics letters.

[7]  Kenneth Steiglitz,et al.  Information transfer between solitary waves in the saturable Schrödinger equation , 1997 .

[8]  J. S. Aitchison,et al.  Discrete Spatial Optical Solitons in Waveguide Arrays , 1998 .

[9]  G. Teschl Jacobi Operators and Completely Integrable Nonlinear Lattices , 1999 .

[10]  Yaron Silberberg,et al.  Discretizing light behaviour in linear and nonlinear waveguide lattices , 2003, Nature.

[11]  B. Luther-Davies,et al.  Photorefractive solitons , 2003 .

[12]  A. Pankov Periodic Nonlinear Schrödinger Equation with Application to Photonic Crystals , 2004 .

[13]  Exact solutions of the saturable discrete nonlinear Schrödinger equation , 2004, nlin/0409057.

[14]  Alexander Pankov,et al.  Travelling Waves And Periodic Oscillations in Fermi-pasta-ulam Lattices , 2005 .

[15]  Gap solitons in periodic discrete nonlinear Schrödinger equations , 2005, nlin/0502043.

[16]  ©1981 American Mathematical Society 0002-9904/81 /0000-0121 /$04.00 , 2022 .