Strongly normal sets of tiles in N dimensions
暂无分享,去创建一个
[1] T. Yung Kong,et al. Minimal Nonsimple Sets of Voxels in Binary Images on A Face-Centered Cubic Grid , 1999, Int. J. Pattern Recognit. Artif. Intell..
[2] Azriel Rosenfeld,et al. Local and global topology preservation in locally finite sets of tiles , 2001, Inf. Sci..
[3] Bidyut Baran Chaudhuri,et al. Detection of 3-D Simple Points for Topology Preserving Transformations with Application to Thinning , 1994, IEEE Trans. Pattern Anal. Mach. Intell..
[4] T. Yung Kong,et al. On Topology Preservation in 2-D and 3-D Thinning , 1995, Int. J. Pattern Recognit. Artif. Intell..
[5] T. Yung Kong,et al. Topology-Preserving Deletion of 1's from 2-, 3- and 4-Dimensional Binary Images , 1997, DGCI.
[6] Peter Braß,et al. On strongly normal tesselations , 1999, Pattern Recognit. Lett..
[7] A. Blumberg. BASIC TOPOLOGY , 2002 .
[8] Azriel Rosenfeld,et al. The Digital Topology of Sets of Convex Voxels , 2000, Graph. Model..
[9] Azriel Rosenfeld,et al. Strongly normal sets of convex polygons or polyhedra , 1998, Pattern Recognit. Lett..
[10] Azriel Rosenfeld,et al. Local Topological Parameters in a Tetrahedral Representation , 1998, Graph. Model. Image Process..
[11] Azriel Rosenfeld,et al. Determining simplicity and computing topological change in strongly normal partial tilings of R2 or R3 , 2000, Pattern Recognit..
[12] R. Ho. Algebraic Topology , 2022 .