Achieving extreme resolution in numerical cosmology using adaptive mesh refinement: resolving primordial star formation

As an entry for the 2001 Gordon Bell Award in the “special” category, we describe our 3-d, hybrid, adaptive mesh refinement (AMR) code Enzo designed for high-resolution, multiphysics, cosmological structure formation simulations. Our parallel implementation places no limit on the depth or complexity of the adaptive grid hierarchy, allowing us to achieve unprecedented spatial and temporal dynamic range. We report on a simulation of primordial star formation which develops over 8000 subgrids at 34 levels of refinement to achieve a local refinement of a factor of 10 in space and time. This allows us to resolve the properties of the first stars which form in the universe assuming standard physics and a standard cosmological model. Achieving extreme resolution requires the use of 128-bit extended precision arithmetic (EPA) to accurately specify the subgrid positions. We describe our EPA AMR implementation on the IBM SP2 Blue Horizon system at the San Diego Supercomputer Center.

[1]  Michael L. Norman,et al.  First Structure Formation and the First Stars , 2000 .

[2]  Frazer R. Pearce,et al.  Clustering of galaxy clusters in cold dark matter universes: Clustering of galaxy clusters , 2002 .

[3]  Isidore Rigoutsos,et al.  An algorithm for point clustering and grid generation , 1991, IEEE Trans. Syst. Man Cybern..

[4]  P. Colella,et al.  Local adaptive mesh refinement for shock hydrodynamics , 1989 .

[5]  Jeremiah P. Ostriker,et al.  A piecewise parabolic method for cosmological hydrodynamics , 1995 .

[6]  Zhiling Lan,et al.  Dynamic load balancing for structured adaptive mesh refinement applications , 2001, International Conference on Parallel Processing, 2001..

[7]  Padova,et al.  Populating a cluster of galaxies - I. Results at z=0 , 2000, astro-ph/0012055.

[8]  Toshiyuki Fukushige,et al.  N-Boday Simulation of Galaxy Formation on GRAPE-4 Special-Purpose Computer , 1996, Proceedings of the 1996 ACM/IEEE Conference on Supercomputing.

[9]  David H. Bailey,et al.  Multiprecision Translation and Execution of Fortran Programs , 1993 .

[10]  M. L. Norman,et al.  Modeling primordial gas in numerical cosmology , 1996, astro-ph/9608040.

[11]  Michael S. Warren,et al.  Astrophysical N-body simulations using hierarchical tree data structures , 1992, Proceedings Supercomputing '92.

[12]  Tom Abel,et al.  The Formation and Fragmentation of Primordial Molecular Clouds , 1999 .

[13]  Jeremiah P. Ostriker,et al.  ASTRONOMICAL TESTS OF THE COLD DARK MATTER SCENARIO , 1993 .

[14]  Greg L. Bryan,et al.  Fluids in the universe: adaptive mesh refinement in cosmology , 1999, Comput. Sci. Eng..

[15]  M. Norman,et al.  ZEUS-2D : a radiation magnetohydrodynamics code for astrophysical flows in two space dimensions. II : The magnetohydrodynamic algorithms and tests , 1992 .

[16]  G. Bryan,et al.  Cosmological Adaptive Mesh Refinement , 1998, astro-ph/9807121.

[17]  G. Bryan,et al.  A Hybrid AMR Application for Cosmology and Astrophysics , 1997, astro-ph/9710187.

[18]  M. Norman,et al.  Cosmological hydrodynamics with multi-species chemistry and nonequilibrium ionization and cooling , 1996, astro-ph/9608041.