Best practices in current models mimicking drug permeability in the gastrointestinal tract - an UNGAP review.

[1]  M. Brandl,et al.  `Stirred not shaken!' Comparing agitation methods for permeability studies using a novel type of 96-well sandwich-plates. , 2021, Journal of pharmaceutical sciences.

[2]  V. Préat,et al.  An overview of in vitro, ex vivo and in vivo models for studying the transport of drugs across intestinal barriers. , 2021, Advanced drug delivery reviews.

[3]  S. Hellberg,et al.  Advances in Predictions of Oral Bioavailability of Candidate Drugs in Man with New Machine Learning Methodology , 2021, Molecules.

[4]  K. Sugano Lost in modelling and simulation? , 2021, ADMET & DMPK.

[5]  C. O’Driscoll,et al.  Pre-clinical evaluation of a modified cyclodextrin-based nanoparticle for intestinal delivery of Liraglutide. , 2020, Journal of pharmaceutical sciences.

[6]  M. Mezler,et al.  Characterization and Validation of Canine P-Glycoprotein-Deficient MDCK II Cell Lines for Efflux Substrate Screening , 2020, Pharmaceutical Research.

[7]  M. Brandl,et al.  Dissolution/Permeation with PermeaLoop™: experience and IVIVC exemplified by dipyridamole enabling formulations. , 2020, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[8]  M. Brandl,et al.  Do phospholipids boost or attenuate drug absorption? In vitro and in vivo evaluation of m ono- and diacyl-phospholipid-based solid dispersions of celecoxib. , 2020, Journal of pharmaceutical sciences.

[9]  B. Griffin,et al.  A Retrospective Biopharmaceutical Analysis of >800 Approved Oral Drug Products: Are Drug Properties of Solid Dispersions and Lipid-Based Formulations Distinctive? , 2020, Journal of pharmaceutical sciences.

[10]  M. Jamei,et al.  IMI - Oral biopharmaceutics tools project - Evaluation of bottom-up PBPK prediction success part 4: Prediction accuracy and software comparisons with improved data and modelling strategies. , 2020, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[11]  David J Brayden,et al.  Salcaprozate sodium (SNAC) enhances permeability of octreotide across isolated rat and human intestinal epithelial mucosae in Ussing chambers. , 2020, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[12]  L. Benet,et al.  The Critical Role of Passive Permeability in Designing Successful Drugs , 2020, ChemMedChem.

[13]  A. Bernkop‐Schnürch,et al.  Self-emulsifying drug delivery systems: About the fate of hydrophobic ion pairs on a phospholipid bilayer , 2020, Journal of Molecular Liquids.

[14]  V. Lauschke,et al.  The past, present and future of intestinal in vitro cell systems for drug absorption studies. , 2020, Journal of pharmaceutical sciences.

[15]  B. Griffin,et al.  Exploring impact of supersaturated lipid-based drug delivery systems of celecoxib on in vitro permeation across PermeapadⓇ membrane and in vivo absorption. , 2020, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[16]  Bastian Haering,et al.  The tangential flow absorption model (TFAM) - a novel dissolution method for evaluating the performance of amorphous solid dispersions of poorly water-soluble actives. , 2020, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[17]  P. Sinko,et al.  Ultra-Thin, Large-Area Membrane Diffusion Cell for pH-Dependent Simultaneous Dissolution and Absorption Studies. , 2020, Molecular pharmaceutics.

[18]  J. Tack,et al.  The effect of reduced gastric acid secretion on the gastrointestinal disposition of a ritonavir amorphous solid dispersion in fasted healthy volunteers: an in vivo - in vitro investigation. , 2020, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[19]  Christel A. S. Bergström,et al.  Suitability of Artificial Membranes in Lipolysis-Permeation Assays of Oral Lipid-Based Formulations , 2020, Pharmaceutical Research.

[20]  M. Bolger,et al.  Translational Modeling Strategies for Orally Administered Drug Products: Academic, Industrial and Regulatory Perspectives , 2020, Pharmaceutical Research.

[21]  M. Brandl,et al.  Drug Permeability Profiling Using the Novel Permeapad® 96-Well Plate , 2020, Pharmaceutical Research.

[22]  Clement Agoni,et al.  Druggability and drug-likeness concepts in drug design: are biomodelling and predictive tools having their say? , 2020, Journal of Molecular Modeling.

[23]  David J Brayden,et al.  A head-to-head Caco-2 assay comparison of the mechanisms of action of the intestinal permeation enhancers: SNAC and sodium caprate (C10). , 2020, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[24]  Max K. Leong,et al.  In Silico Prediction of Intestinal Permeability by Hierarchical Support Vector Regression , 2020, International journal of molecular sciences.

[25]  Z. Klausner,et al.  The Effect of Anesthetic Regimens on Intestinal Absorption of Passively Absorbed Drugs in Rats , 2020, Pharmaceutical Research.

[26]  Susanne Winiwarter,et al.  Improving the Accuracy of Predicted Human Pharmacokinetics: Lessons Learned from the AstraZeneca Drug Pipeline Over Two Decades. , 2020, Trends in pharmacological sciences.

[27]  R. Langer,et al.  Robotically handled whole-tissue culture system for the screening of oral drug formulations , 2020, Nature Biomedical Engineering.

[28]  C. Reppas,et al.  On the Usefulness of Two Small-Scale In Vitro Setups in the Evaluation of Luminal Precipitation of Lipophilic Weak Bases in Early Formulation Development , 2020, Pharmaceutics.

[29]  David J Brayden,et al.  An Enteric-Coated Polyelectrolyte Nanocomplex Delivers Insulin in Rat Intestinal Instillations When Combined with a Permeation Enhancer , 2020, Pharmaceutics.

[30]  R. Havenaar,et al.  On the usefulness of compendial setups and tiny-TIM system in evaluating the in vivo performance of oral drug products with various release profiles in the fasted state: Case example sodium salt of A6197. , 2020, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[31]  Asher Mullard,et al.  2019 FDA drug approvals , 2020, Nature Reviews Drug Discovery.

[32]  A. Müllertz,et al.  Evaluating side‐by‐side diffusion models for studying drug supersaturation in an absorptive environment: a case example of fenofibrate and felodipine , 2019, The Journal of pharmacy and pharmacology.

[33]  Yunhui Wu,et al.  ICH M9 Guideline in development on Biopharmaceutics Classification System-based biowaivers: An Industrial Perspective from the IQ Consortium. , 2019, Molecular pharmaceutics.

[34]  Kazunori Kadota,et al.  The elucidation of key factors for oral absorption enhancement of nanocrystal formulations: In vitro - in vivo correlation of nanocrystals. , 2019, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[35]  K. Mizuguchi,et al.  Constructing an in silico three-class predictor of human intestinal absorption with Caco-2 permeability and dried-DMSO solubility. , 2019, Journal of pharmaceutical sciences.

[36]  K. Whitehead,et al.  Thrifty, Rapid Intestinal Monolayers (TRIM) Using Caco-2 Epithelial Cells for Oral Drug Delivery Experiments , 2019, Pharmaceutical Research.

[37]  S. Cole,et al.  The Importance of the Human Mass Balance Study in Regulatory Submissions , 2019, CPT: pharmacometrics & systems pharmacology.

[38]  David J Brayden,et al.  Labrasol® is an efficacious intestinal permeation enhancer across rat intestine: Ex vivo and in vivo rat studies. , 2019, Journal of controlled release : official journal of the Controlled Release Society.

[39]  H. Pataki,et al.  Prediction of bioequivalence and food effect using flux and solubility based methods. , 2019, Molecular pharmaceutics.

[40]  M. V. van Lipzig,et al.  A higher throughput and physiologically relevant two-compartmental human ex vivo intestinal tissue system for studying gastrointestinal processes. , 2019, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[41]  Christel A. S. Bergström,et al.  Successful oral delivery of poorly water-soluble drugs both depends on the intraluminal behavior of drugs and of appropriate advanced drug delivery systems. , 2019, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[42]  H. Lennernäs,et al.  Evaluation of drug permeability calculation based on luminal disappearance and plasma appearance in the rat single-pass intestinal perfusion model. , 2019, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[43]  Marian E. Gindy,et al.  Assessing the Utility of In Vitro Screening Tools for Predicting Bio-Performance of Oral Peptide Delivery , 2019, Pharmaceutical Research.

[44]  Hans Lennernäs,et al.  Intestinal Permeability and Drug Absorption: Predictive Experimental, Computational and In Vivo Approaches , 2019, Pharmaceutics.

[45]  M. Kreft,et al.  Demonstrating suitability of the Caco‐2 cell model for BCS‐based biowaiver according to the recent FDA and ICH harmonised guidelines , 2019, The Journal of pharmacy and pharmacology.

[46]  H. Lennernäs,et al.  Rat intestinal drug permeability: a status report and summary of repeated determinations. , 2019, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[47]  P Zane,et al.  In vivo Models and Decision Trees for Formulation Development in Early Drug Development: A Review of Current Practices and Recommendations for Biopharmaceutical Development. , 2019, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[48]  V. Pokharkar,et al.  Risk assessment and QbD based optimization of an Eprosartan mesylate nanosuspension: in-vitro characterization, PAMPA and in-vivo assessment. , 2019, International journal of pharmaceutics.

[49]  M. Brandl,et al.  High-Throughput Dissolution/Permeation Screening—A 96-Well Two-Compartment Microplate Approach , 2019, Pharmaceutics.

[50]  B. Griffin,et al.  Food for thought: formulating away the food effect – a PEARRL review , 2019, The Journal of pharmacy and pharmacology.

[51]  Anette Müllertz,et al.  In vitro models for the prediction of in vivo performance of oral dosage forms: Recent progress from partnership through the IMI OrBiTo collaboration , 2019, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[52]  Y. Kalia,et al.  Drug Transport across Porcine Intestine Using an Ussing Chamber System: Regional Differences and the Effect of P-Glycoprotein and CYP3A4 Activity on Drug Absorption , 2019, Pharmaceutics.

[53]  G. Casañola-Martín,et al.  In Silico Assessment of ADME Properties: Advances in Caco-2 Cell Monolayer Permeability Modeling. , 2019, Current topics in medicinal chemistry.

[54]  Filippos Kesisoglou,et al.  PBPK Absorption Modeling: Establishing the In Vitro–In Vivo Link—Industry Perspective , 2019, The AAPS Journal.

[55]  H. Wortelboer,et al.  The effect of chitosan on the bioaccessibility and intestinal permeability of acyclovir , 2019, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[56]  M. Brandl,et al.  A dynamic in vitro permeation study on solid mono‐ and diacyl‐phospholipid dispersions of celecoxib , 2019, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[57]  Geoff G. Z. Zhang,et al.  Relationship between amorphous solid dispersion in vivo absorption and in vitro dissolution: phase behavior during dissolution, speciation, and membrane mass transport , 2018, Journal of controlled release : official journal of the Controlled Release Society.

[58]  J. Ahnfelt-Rønne,et al.  Transcellular stomach absorption of a derivatized glucagon-like peptide-1 receptor agonist , 2018, Science Translational Medicine.

[59]  T. Volkova,et al.  The effect of different polymers on the solubility, permeability and distribution of poor soluble 1,2,4-thiadiazole derivative , 2018, Journal of Molecular Liquids.

[60]  H. Lennernäs,et al.  Jejunal absorption of aprepitant from nanosuspensions: Role of particle size, prandial state and mucus layer , 2018, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[61]  M. Bermejo,et al.  Determination of intestinal permeability using in situ perfusion model in rats: Challenges and advantages to BCS classification applied to digoxin , 2018, International journal of pharmaceutics.

[62]  Michael D Shultz,et al.  Two Decades under the Influence of the Rule of Five and the Changing Properties of Approved Oral Drugs. , 2018, Journal of medicinal chemistry.

[63]  Oksana Tsinman,et al.  Using pH Gradient Dissolution with In-Situ Flux Measurement to Evaluate Bioavailability and DDI for Formulated Poorly Soluble Drug Products , 2018, AAPS PharmSciTech.

[64]  David J Brayden,et al.  Physicochemical, pharmacokinetic and pharmacodynamic analyses of amphiphilic cyclodextrin‐based nanoparticles designed to enhance intestinal delivery of insulin , 2018, Journal of controlled release : official journal of the Controlled Release Society.

[65]  Martin Kuentz,et al.  Lipophilicity and hydrophobicity considerations in bio‐enabling oral formulations approaches – a PEARRL review , 2018, The Journal of pharmacy and pharmacology.

[66]  M. Ruponen,et al.  Permeability of glibenclamide through a PAMPA membrane: The effect of co‐amorphization , 2018, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[67]  A. Bansal,et al.  Use of biorelevant dissolution and PBPK modeling to predict oral drug absorption , 2018, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[68]  H. Lennernäs,et al.  The effects of three absorption‐modifying critical excipients on the in vivo intestinal absorption of six model compounds in rats and dogs , 2018, International journal of pharmaceutics.

[69]  M. Brandl,et al.  Drug permeability profiling using cell-free permeation tools: Overview and applications. , 2018, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[70]  M. Brandl,et al.  PermeaLoop™, a novel in vitro tool for small‐scale drug‐dissolution/permeation studies , 2018, Journal of pharmaceutical and biomedical analysis.

[71]  Bálint Sinkó,et al.  Effect of Formulation Additives on Drug Transport through Size-Exclusion Membranes. , 2018, Molecular pharmaceutics.

[72]  Ya Zhao,et al.  Interactions Between Emodin and Efflux Transporters on Rat Enterocyte by a Validated Ussing Chamber Technique , 2018, Front. Pharmacol..

[73]  B. Riebesehl,et al.  Ranking Itraconazole Formulations Based on the Flux through Artificial Lipophilic Membrane , 2018, Pharmaceutical Research.

[74]  Dave A. Miller,et al.  Generation of a Weakly Acidic Amorphous Solid Dispersion of the Weak Base Ritonavir with Equivalent In Vitro and In Vivo Performance to Norvir Tablet , 2018, AAPS PharmSciTech.

[75]  Hai Pham-The,et al.  Computational modeling of human oral bioavailability: what will be next? , 2018, Expert opinion on drug discovery.

[76]  N. Denkov,et al.  Micellar solubilization of poorly water-soluble drugs: effect of surfactant and solubilizate molecular structure , 2018, Drug development and industrial pharmacy.

[77]  Attila Balogh,et al.  The effect of formulation additives on in vitro dissolution‐absorption profile and in vivo bioavailability of telmisartan from brand and generic formulations , 2018, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[78]  N. Škalko-Basnet,et al.  Mucus-PVPA (mucus Phospholipid Vesicle-based Permeation Assay): An artificial permeability tool for drug screening and formulation development. , 2018, International journal of pharmaceutics.

[79]  Patrick Augustijns,et al.  The artificial membrane insert system as predictive tool for formulation performance evaluation. , 2018, International journal of pharmaceutics.

[80]  P. Sinko,et al.  In Vitro Characterization of the Biomimetic Properties of Poly(dimethylsiloxane) To Simulate Oral Drug Absorption. , 2017, Molecular pharmaceutics.

[81]  L. S. Taylor,et al.  Absorptive Dissolution Testing of Supersaturating Systems: Impact of Absorptive Sink Conditions on Solution Phase Behavior and Mass Transport. , 2017, Molecular pharmaceutics.

[82]  H. Lennernäs,et al.  Regional Intestinal Permeability in Rats: A Comparison of Methods. , 2017, Molecular pharmaceutics.

[83]  Harvey Wong,et al.  Predicting Oral Drug Absorption: Mini Review on Physiologically-Based Pharmacokinetic Models , 2017, Pharmaceutics.

[84]  M. Wendt,et al.  Beyond the Rule of 5: Lessons Learned from AbbVie's Drugs and Compound Collection. , 2017, Journal of medicinal chemistry.

[85]  A. Glynn,et al.  Are additive effects of dietary surfactants on intestinal tight junction integrity an overlooked human health risk? - A mixture study on Caco-2 monolayers. , 2017, Food and Chemical Toxicology.

[86]  M. Morgen,et al.  Impact of Drug-Rich Colloids of Itraconazole and HPMCAS on Membrane Flux in Vitro and Oral Bioavailability in Rats. , 2017, Molecular pharmaceutics.

[87]  David J Brayden,et al.  A human intestinal M-cell-like model for investigating particle, antigen and microorganism translocation , 2017, Nature Protocols.

[88]  C. Heidecke,et al.  The Ussing Chamber Assay to Study Drug Metabolism and Transport in the Human Intestine , 2017, Current protocols in pharmacology.

[89]  David J Brayden,et al.  Evaluation of PepT1 transport of food‐derived antihypertensive peptides, Ile‐Pro‐Pro and Leu‐Lys‐Pro using in vitro, ex vivo and in vivo transport models , 2017, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[90]  Thaisa Marinho Dezani,et al.  In Situ Intestinal Perfusion in Rodents: Future Perspectives for Application on Absorption Studies and Classification of Drugs. , 2017, Mini reviews in medicinal chemistry.

[91]  A. Dahan,et al.  Toward Successful Cyclodextrin Based Solubility-Enabling Formulations for Oral Delivery of Lipophilic Drugs: Solubility-Permeability Trade-Off, Biorelevant Dissolution, and the Unstirred Water Layer. , 2017, Molecular pharmaceutics.

[92]  M. Morgen,et al.  Development of a Biorelevant, Material-Sparing Membrane Flux Test for Rapid Screening of Bioavailability-Enhancing Drug Product Formulations. , 2017, Molecular pharmaceutics.

[93]  M. Brandl,et al.  Evaluation of a dynamic dissolution/permeation model: Mutual influence of dissolution and barrier-flux under non-steady state conditions. , 2017, International journal of pharmaceutics.

[94]  Forner Kristin,et al.  Dissolution and dissolution/permeation experiments for predicting systemic exposure following oral administration of the BCS class II drug clarithromycin , 2017, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[95]  Dong-Sheng Cao,et al.  Predicting human intestinal absorption with modified random forest approach: a comprehensive evaluation of molecular representation, unbalanced data, and applicability domain issues , 2017 .

[96]  M. Bermejo,et al.  Usefulness of Caco-2/HT29-MTX and Caco-2/HT29-MTX/Raji B Coculture Models To Predict Intestinal and Colonic Permeability Compared to Caco-2 Monoculture. , 2017, Molecular pharmaceutics.

[97]  A. Jadhav,et al.  Highly predictive and interpretable models for PAMPA permeability. , 2017, Bioorganic & medicinal chemistry.

[98]  H. Lennernäs,et al.  Optimization of the Ussing chamber setup with excised rat intestinal segments for dissolution/permeation experiments of poorly soluble drugs , 2017, Drug development and industrial pharmacy.

[99]  M. Shalaeva,et al.  Relationship between Passive Permeability and Molecular Polarity Using Block Relevance Analysis. , 2017, Molecular pharmaceutics.

[100]  P. Artursson,et al.  Oral absorption of peptides and nanoparticles across the human intestine: Opportunities, limitations and studies in human tissues. , 2016, Advanced drug delivery reviews.

[101]  David J Brayden,et al.  Intestinal permeation enhancers for oral peptide delivery. , 2016, Advanced drug delivery reviews.

[102]  Andy Z. X. Zhu,et al.  Utilizing In Vitro Dissolution-Permeation Chamber for the Quantitative Prediction of pH-Dependent Drug-Drug Interactions with Acid-Reducing Agents: a Comparison with Physiologically Based Pharmacokinetic Modeling , 2016, The AAPS Journal.

[103]  Filippos Kesisoglou,et al.  Physiologically Based Absorption Modeling to Impact Biopharmaceutics and Formulation Strategies in Drug Development-Industry Case Studies. , 2016, Journal of pharmaceutical sciences.

[104]  A. Lindahl,et al.  Use of physiologically relevant biopharmaceutics tools within the pharmaceutical industry and in regulatory sciences: Where are we now and what are the gaps? , 2016, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[105]  Anna Eidelman,et al.  Justification of Drug Product Dissolution Rate and Drug Substance Particle Size Specifications Based on Absorption PBPK Modeling for Lesinurad Immediate Release Tablets. , 2016, Molecular pharmaceutics.

[106]  Bradley C Doak,et al.  Cell permeability beyond the rule of 5. , 2016, Advanced drug delivery reviews.

[107]  Christopher J. H. Porter,et al.  Computational prediction of formulation strategies for beyond-rule-of-5 compounds. , 2016, Advanced drug delivery reviews.

[108]  Christel A. S. Bergström,et al.  Understanding the Challenge of Beyond-Rule-of-5 Compounds. , 2016, Advanced drug delivery reviews.

[109]  Tudor I. Oprea,et al.  BDDCS, the Rule of 5 and drugability. , 2016, Advanced drug delivery reviews.

[110]  M. Misra,et al.  Intranasal delivery of venlafaxine loaded nanostructured lipid carrier: Risk assessment and QbD based optimization , 2016 .

[111]  J. Cardot,et al.  Implementing the Biopharmaceutics Classification System in Drug Development: Reconciling Similarities, Differences, and Shared Challenges in the EMA and US-FDA-Recommended Approaches , 2016, The AAPS Journal.

[112]  Dong-Sheng Cao,et al.  ADME Properties Evaluation in Drug Discovery: Prediction of Caco-2 Cell Permeability Using a Combination of NSGA-II and Boosting , 2016, J. Chem. Inf. Model..

[113]  Shikha Gupta,et al.  Predicting human intestinal absorption of diverse chemicals using ensemble learning based QSAR modeling approaches , 2016, Comput. Biol. Chem..

[114]  I. Kanfer,et al.  BCS Biowaivers: Similarities and Differences Among EMA, FDA, and WHO Requirements , 2016, The AAPS Journal.

[115]  R. Havenaar,et al.  Increased bioavailability of celecoxib under fed versus fasted conditions is determined by postprandial bile secretion as demonstrated in a dynamic gastrointestinal model , 2016, Drug development and industrial pharmacy.

[116]  R. Havenaar,et al.  Evaluation of two dynamic in vitro models simulating fasted and fed state conditions in the upper gastrointestinal tract (TIM-1 and tiny-TIM) for investigating the bioaccessibility of pharmaceutical compounds from oral dosage forms. , 2016, International journal of pharmaceutics.

[117]  J. Wiśniewski,et al.  The Proteome of Filter-Grown Caco-2 Cells With a Focus on Proteins Involved in Drug Disposition. , 2016, Journal of pharmaceutical sciences.

[118]  Donna A Volpe,et al.  Transporter assays as useful in vitro tools in drug discovery and development , 2016, Expert opinion on drug discovery.

[119]  G. Lappin Approaches to intravenous clinical pharmacokinetics: Recent developments with isotopic microtracers , 2016, Journal of clinical pharmacology.

[120]  Anna Tramontano,et al.  Prediction of the permeability of neutral drugs inferred from their solvation properties , 2015, Bioinform..

[121]  David J Brayden,et al.  In vitro and in vivo preclinical evaluation of a minisphere emulsion-based formulation (SmPill®) of salmon calcitonin. , 2015, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[122]  Y. Marrero-Ponce,et al.  Prediction of Caco-2 Cell Permeability Using Bilinear Indices and Multiple Linear Regression , 2015 .

[123]  A. Bauer-Brandl,et al.  Permeapad™ for investigation of passive drug permeability: The effect of surfactants, co-solvents and simulated intestinal fluids (FaSSIF and FeSSIF). , 2015, International journal of pharmaceutics.

[124]  A. Dahan,et al.  The use of captisol (SBE7-β-CD) in oral solubility-enabling formulations: Comparison to HPβCD and the solubility-permeability interplay. , 2015, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[125]  M. Corsetti,et al.  Gastrointestinal behavior of nano- and microsized fenofibrate: In vivo evaluation in man and in vitro simulation by assessment of the permeation potential. , 2015, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[126]  Maxim V Fedorov,et al.  Fast and General Method To Predict the Physicochemical Properties of Druglike Molecules Using the Integral Equation Theory of Molecular Liquids. , 2015, Molecular pharmaceutics.

[127]  Erik Sjögren,et al.  Direct In Vivo Human Intestinal Permeability (Peff ) Determined with Different Clinical Perfusion and Intubation Methods. , 2015, Journal of pharmaceutical sciences.

[128]  M. Bermejo,et al.  In Situ Perfusion Model in Rat Colon for Drug Absorption Studies: Comparison with Small Intestine and Caco-2 Cell Model. , 2015, Journal of pharmaceutical sciences.

[129]  R. Mrsny,et al.  Enhanced paracellular transport of insulin can be achieved via transient induction of myosin light chain phosphorylation , 2015, Journal of controlled release : official journal of the Controlled Release Society.

[130]  A. Bauer-Brandl,et al.  New biomimetic barrier Permeapad™ for efficient investigation of passive permeability of drugs. , 2015, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[131]  U. Maran,et al.  The Permeability of an Artificial Membrane for Wide Range of pH in Human Gastrointestinal Tract: Experimental Measurements and Quantitative StructureActivity Relationship , 2015, Molecular informatics.

[132]  Geoff G. Z. Zhang,et al.  Impact of Solubilizing Additives on Supersaturation and Membrane Transport of Drugs , 2015, Pharmaceutical Research.

[133]  Erik Sjögren,et al.  Human in vivo regional intestinal permeability: quantitation using site-specific drug absorption data. , 2015, Molecular pharmaceutics.

[134]  M. Bermejo,et al.  In-situ intestinal rat perfusions for human Fabs prediction and BCS permeability class determination: Investigation of the single-pass vs. the Doluisio experimental approaches. , 2015, International journal of pharmaceutics.

[135]  J. Tack,et al.  Rapid conversion of the ester prodrug abiraterone acetate results in intestinal supersaturation and enhanced absorption of abiraterone: in vitro, rat in situ and human in vivo studies. , 2015, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[136]  J. Tack,et al.  Evaluation of fasted and fed state simulated and human intestinal fluids as solvent system in the Ussing chambers model to explore food effects on intestinal permeability. , 2015, International journal of pharmaceutics.

[137]  P. Annaert,et al.  In situ perfusion in rodents to explore intestinal drug absorption: challenges and opportunities. , 2015, International journal of pharmaceutics.

[138]  C. Beaumont,et al.  Human absorption, distribution, metabolism and excretion properties of drug molecules: a plethora of approaches. , 2014, British journal of clinical pharmacology.

[139]  B. Abrahamsson,et al.  Application and validation of an advanced gastrointestinal in vitro model for the evaluation of drug product performance in pharmaceutical development. , 2014, Journal of pharmaceutical sciences.

[140]  Cyrille A M Krul,et al.  A new approach to predict human intestinal absorption using porcine intestinal tissue and biorelevant matrices. , 2014, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[141]  J. Tack,et al.  Human and simulated intestinal fluids as solvent systems to explore food effects on intestinal solubility and permeability. , 2014, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[142]  G. Banco,et al.  Quantifying the effects of inactin vs Isoflurane anesthesia on gastrointestinal motility in rats using dynamic magnetic resonance imaging and spatio‐temporal maps , 2014, Neurogastroenterology and motility : the official journal of the European Gastrointestinal Motility Society.

[143]  Christel A. S. Bergström,et al.  Early pharmaceutical profiling to predict oral drug absorption: current status and unmet needs. , 2014, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[144]  Clive G. Wilson,et al.  In vivo methods for drug absorption - comparative physiologies, model selection, correlations with in vitro methods (IVIVC), and applications for formulation/API/excipient characterization including food effects. , 2014, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[145]  Martin Bergstrand,et al.  PBPK models for the prediction of in vivo performance of oral dosage forms. , 2014, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[146]  Hans Lennernäs,et al.  Regional intestinal drug permeation: biopharmaceutics and drug development. , 2014, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[147]  Anette Müllertz,et al.  In vitro models for the prediction of in vivo performance of oral dosage forms. , 2014, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[148]  J. Isaksson,et al.  Development of a biomimetic phospholipid vesicle-based permeation assay for the estimation of intestinal drug permeability. , 2014, Journal of pharmaceutical sciences.

[149]  L. Fändriks,et al.  Surface area of the digestive tract – revisited , 2014, Scandinavian journal of gastroenterology.

[150]  Li Di,et al.  Passive lipoidal diffusion and carrier-mediated cell uptake are both important mechanisms of membrane permeation in drug disposition. , 2014, Molecular pharmaceutics.

[151]  T. Balogh,et al.  PAMPA study of the temperature effect on permeability. , 2014, European Journal of Pharmaceutical Sciences.

[152]  Jim X. Shen,et al.  Sensitivity-based analytical approaches to support human absolute bioavailability studies. , 2014, Bioanalysis.

[153]  S. Rajput,et al.  Nanosuspension of efavirenz for improved oral bioavailability: formulation optimization, in vitro, in situ and in vivo evaluation , 2014, Drug development and industrial pharmacy.

[154]  Marlene T. Kim,et al.  Critical Evaluation of Human Oral Bioavailability for Pharmaceutical Drugs by Using Various Cheminformatics Approaches , 2013, Pharmaceutical Research.

[155]  Alex Alves Freitas,et al.  Pre-processing Feature Selection for Improved C&RT Models for Oral Absorption , 2013, J. Chem. Inf. Model..

[156]  Jin Sun,et al.  Structure‐based prediction of human intestinal membrane permeability for rapid in silico BCS classification , 2013, Biopharmaceutics & drug disposition.

[157]  C. Reppas,et al.  In Vitro and Ex Vivo Investigation of the Impact of Luminal Lipid Phases on Passive Permeability of Lipophilic Small Molecules Using PAMPA , 2013, Pharmaceutical Research.

[158]  Erik Sjögren,et al.  In silico predictions of gastrointestinal drug absorption in pharmaceutical product development: application of the mechanistic absorption model GI-Sim. , 2013, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[159]  A. Dahan,et al.  Oral Delivery of Lipophilic Drugs: The Tradeoff between Solubility Increase and Permeability Decrease When Using Cyclodextrin-Based Formulations , 2013, PloS one.

[160]  Tal Burt,et al.  Microdosing and drug development: past, present and future , 2013, Expert opinion on drug metabolism & toxicology.

[161]  C. Porter,et al.  The potential for drug supersaturation during intestinal processing of lipid-based formulations may be enhanced for basic drugs. , 2013, Molecular pharmaceutics.

[162]  Hai Pham-The,et al.  The Use of Rule‐Based and QSPR Approaches in ADME Profiling: A Case Study on Caco‐2 Permeability , 2013, Molecular informatics.

[163]  Gert Fricker,et al.  Biopharmaceutical classification of poorly soluble drugs with respect to "enabling formulations". , 2013, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[164]  J. Tack,et al.  Exploring food effects on indinavir absorption with human intestinal fluids in the mouse intestine. , 2013, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[165]  P. Tso,et al.  Intestinal bile secretion promotes drug absorption from lipid colloidal phases via induction of supersaturation. , 2013, Molecular pharmaceutics.

[166]  E. Carlesso,et al.  Extracorporeal membrane oxygenation: the MOTOR of cytokine production? , 2013, Critical Care.

[167]  D. Kell,et al.  The promiscuous binding of pharmaceutical drugs and their transporter-mediated uptake into cells: what we (need to) know and how we can do so. , 2013, Drug discovery today.

[168]  Christer Tannergren,et al.  Comprehensive study on regional human intestinal permeability and prediction of fraction absorbed of drugs using the Ussing chamber technique. , 2013, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[169]  M. Brandl,et al.  Amorphous solid dispersion enhances permeation of poorly soluble ABT-102: true supersaturation vs. apparent solubility enhancement. , 2012, International journal of pharmaceutics.

[170]  M. Brandl,et al.  Impact of FaSSIF on the solubility and dissolution-/permeation rate of a poorly water-soluble compound. , 2012, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[171]  Daisuke Nakai,et al.  Human small intestinal and colonic tissue mounted in the Ussing chamber as a tool for characterizing the intestinal absorption of drugs. , 2012, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[172]  G. Ecker,et al.  Evidence-based approach to assess passive diffusion and carrier-mediated drug transport. , 2012, Drug discovery today.

[173]  A. Dahan,et al.  A win-win solution in oral delivery of lipophilic drugs: supersaturation via amorphous solid dispersions increases apparent solubility without sacrifice of intestinal membrane permeability. , 2012, Molecular pharmaceutics.

[174]  A. Dahan,et al.  Accounting for the solubility-permeability interplay in oral formulation development for poor water solubility drugs: the effect of PEG-400 on carbamazepine absorption. , 2012, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[175]  M Á Cabrera-Pérez,et al.  QSPR in oral bioavailability: specificity or integrality? , 2012, Mini reviews in medicinal chemistry.

[176]  Lyle Isaacs,et al.  Acyclic cucurbit[n]uril molecular containers enhance the solubility and bioactivity of poorly soluble pharmaceuticals , 2012, Nature Chemistry.

[177]  M. Yasin,et al.  An Investigation into the Utility of a Multi-compartmental, Dynamic, System of the Upper Gastrointestinal Tract to Support Formulation Development and Establish Bioequivalence of Poorly Soluble Drugs , 2012, The AAPS Journal.

[178]  A. Dahan,et al.  The solubility-permeability interplay when using cosolvents for solubilization: revising the way we use solubility-enabling formulations. , 2012, Molecular pharmaceutics.

[179]  Aliasgar Shahiwala,et al.  Formulation approaches in enhancement of patient compliance to oral drug therapy , 2011, Expert opinion on drug delivery.

[180]  M. Brandl,et al.  Effect of the non-ionic surfactant Poloxamer 188 on passive permeability of poorly soluble drugs across Caco-2 cell monolayers. , 2011, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[181]  G. Amidon,et al.  Bioequivalence of Oral Products and the Biopharmaceutics Classification System: Science, Regulation, and Public Policy , 2011, Clinical pharmacology and therapeutics.

[182]  G. Amidon,et al.  The solubility-permeability interplay: mechanistic modeling and predictive application of the impact of micellar solubilization on intestinal permeation. , 2011, Molecular pharmaceutics.

[183]  M. Brandl,et al.  In‐vitro permeability of poorly water soluble drugs in the phospholipid vesicle‐based permeation assay: the influence of nonionic surfactants , 2011, The Journal of pharmacy and pharmacology.

[184]  Rafael Gozalbes,et al.  QSAR-based permeability model for drug-like compounds. , 2011, Bioorganic & medicinal chemistry.

[185]  Jörg Huwyler,et al.  Combinatorial QSAR modeling of human intestinal absorption. , 2011, Molecular pharmaceutics.

[186]  Malcolm Rowland,et al.  Physiologically-based pharmacokinetics in drug development and regulatory science. , 2011, Annual review of pharmacology and toxicology.

[187]  Jennifer B Dressman,et al.  The developability classification system: application of biopharmaceutics concepts to formulation development. , 2010, Journal of pharmaceutical sciences.

[188]  M. Brandl,et al.  In‐vitro permeability screening of melt extrudate formulations containing poorly water‐soluble drug compounds using the phospholipid vesicle‐based barrier , 2010, The Journal of pharmacy and pharmacology.

[189]  M. Varma,et al.  Targeting intestinal transporters for optimizing oral drug absorption. , 2010, Current drug metabolism.

[190]  David J Brayden,et al.  In vitro and in vivo characterisation of a novel peptide delivery system: amphiphilic polyelectrolyte-salmon calcitonin nanocomplexes. , 2010, Journal of controlled release : official journal of the Controlled Release Society.

[191]  Donna A. Volpe,et al.  Application of Method Suitability for Drug Permeability Classification , 2010, The AAPS Journal.

[192]  L. Benet,et al.  The FDA Should Eliminate the Ambiguities in the Current BCS Biowaiver Guidance and Make Public the Drugs for Which BCS Biowaivers Have Been Granted , 2010, Clinical pharmacology and therapeutics.

[193]  Li Di,et al.  Coexistence of passive and carrier-mediated processes in drug transport , 2010, Nature Reviews Drug Discovery.

[194]  Alexander Tropsha,et al.  Best Practices for QSAR Model Development, Validation, and Exploitation , 2010, Molecular informatics.

[195]  P. Annaert,et al.  Validation of a differential in situ perfusion method with mesenteric blood sampling in rats for intestinal drug interaction profiling , 2010, Biopharmaceutics & drug disposition.

[196]  M. Niemi,et al.  Membrane transporters in drug development , 2010, Nature Reviews Drug Discovery.

[197]  David J Brayden,et al.  Evaluation of intestinal absorption and mucosal toxicity using two promoters. II. Rat instillation and perfusion studies. , 2009, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[198]  Kazuya Nakao,et al.  In silico Prediction of Human Oral Absorption Based on QSAR Analyses of PAMPA Permeability , 2009, Chemistry & biodiversity.

[199]  R. Templer,et al.  Drug interactions with lipid membranes. , 2009, Chemical Society reviews.

[200]  P. Annaert,et al.  INTESTINAL PERFUSION WITH MESENTERIC BLOOD SAMPLING IN WILD-TYPE AND KNOCKOUT MICE , 2009, Drug Metabolism and Disposition.

[201]  L. Clarke A guide to Ussing chamber studies of mouse intestine. , 2009, American journal of physiology. Gastrointestinal and liver physiology.

[202]  N. Penner,et al.  Human radiolabeled mass balance studies: objectives, utilities and limitations. , 2009, Biopharmaceutics & drug disposition.

[203]  J. Dressman,et al.  Cytochrome P450‐mediated metabolism in the human gut wall , 2009 .

[204]  J. Dressman,et al.  Cytochrome P450-mediated metabolism in the human gut wall. , 2009, The Journal of pharmacy and pharmacology.

[205]  Sebastian Polak,et al.  Population-Based Mechanistic Prediction of Oral Drug Absorption , 2009, The AAPS Journal.

[206]  M. Brandl,et al.  The Phospholipid Vesicle-Based Drug Permeability Assay: 5. Development toward an Automated Procedure for High-Throughput Permeability Screening , 2009 .

[207]  P. Artursson,et al.  Comparison of drug transporter gene expression and functionality in Caco-2 cells from 10 different laboratories. , 2008, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[208]  Johann Gasteiger,et al.  Explorations into modeling human oral bioavailability. , 2008, European journal of medicinal chemistry.

[209]  M. Brandl,et al.  Drug permeability across a phospholipid vesicle-based barrier 4. The effect of tensides, co-solvents and pH changes on barrier integrity and on drug permeability. , 2008, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[210]  K. Cheng,et al.  Prediction of oral drug absorption in humans – from cultured cell lines and experimental animals , 2008 .

[211]  K. Sandy Pang,et al.  The Caco-2 cell monolayer: usefulness and limitations , 2008 .

[212]  R. Borchardt,et al.  Physico‐Chemical and Biological Factors that Influence a Drug's Cellular Permeability by Passive Diffusion , 2008 .

[213]  Tycho Heimbach,et al.  Prodrugs: design and clinical applications , 2008, Nature Reviews Drug Discovery.

[214]  P. Balimane,et al.  A Novel Design of Artificial Membrane for Improving the PAMPA Model , 2008, Pharmaceutical Research.

[215]  Alexander Golbraikh,et al.  Predictive QSAR modeling workflow, model applicability domains, and virtual screening. , 2007, Current pharmaceutical design.

[216]  Li Di,et al.  PAMPA--critical factors for better predictions of absorption. , 2007, Journal of pharmaceutical sciences.

[217]  H Lennernäs,et al.  Intestinal permeability and its relevance for absorption and elimination , 2007, Xenobiotica; the fate of foreign compounds in biological systems.

[218]  P. Artursson,et al.  Determination of drug permeability and prediction of drug absorption in Caco-2 monolayers , 2007, Nature Protocols.

[219]  Bertil Abrahamsson,et al.  A convenient method for local drug administration at predefined sites in the entire gastrointestinal tract: experiences from 13 phase I studies. , 2007, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[220]  M. Brandl,et al.  Drug permeability across a phospholipid vesicle based barrier: 3. Characterization of drug-membrane interactions and the effect of agitation on the barrier integrity and on the permeability. , 2007, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[221]  Corwin Hansch,et al.  Comparative QSAR studies on PAMPA/modified PAMPA for high throughput profiling of drug absorption potential with respect to Caco-2 cells and human intestinal absorption , 2007, J. Comput. Aided Mol. Des..

[222]  Tingjun Hou,et al.  ADME Evaluation in Drug Discovery, 6. Can Oral Bioavailability in Humans Be Effectively Predicted by Simple Molecular Property-Based Rules? , 2007, J. Chem. Inf. Model..

[223]  M. Kansy,et al.  PAMPA–Excipient Classification Gradient Map , 2006, Pharmaceutical Research.

[224]  David J Brayden,et al.  Rat, ovine and bovine Peyer's patches mounted in horizontal diffusion chambers display sampling function. , 2006, Journal of controlled release : official journal of the Controlled Release Society.

[225]  Ulf Norinder,et al.  Prediction of ADMET Properties , 2006, ChemMedChem.

[226]  Wei Zhang,et al.  Recent advances in computational prediction of drug absorption and permeability in drug discovery. , 2006, Current medicinal chemistry.

[227]  Ho-Chul Shin,et al.  Why is it Challenging to Predict Intestinal Drug Absorption and Oral Bioavailability in Human Using Rat Model , 2006, Pharmaceutical Research.

[228]  M. Rowland,et al.  The use of isotopes in the determination of absolute bioavailability of drugs in humans , 2006, Expert opinion on drug metabolism & toxicology.

[229]  Su Young Choi,et al.  Prediction of the permeability of drugs through study on quantitative structure-permeability relationship. , 2006, Journal of pharmaceutical and biomedical analysis.

[230]  A. Rettie,et al.  THE HUMAN INTESTINAL CYTOCHROME P450 “PIE” , 2006, Drug Metabolism and Disposition.

[231]  Stephen Hodge,et al.  A. Theoretical Basis , 2005 .

[232]  R. V. van Breemen,et al.  Caco-2 cell permeability assays to measure drug absorption , 2005, Expert opinion on drug metabolism & toxicology.

[233]  Nazila Salamat-Miller,et al.  Current strategies used to enhance the paracellular transport of therapeutic polypeptides across the intestinal epithelium. , 2005, International journal of pharmaceutics.

[234]  Kiyohiko Sugano,et al.  Prediction of oral drug absorption in humans by theoretical passive absorption model. , 2005, International journal of pharmaceutics.

[235]  Ulf Norinder,et al.  Exploring the role of different drug transport routes in permeability screening. , 2005, Journal of medicinal chemistry.

[236]  Maykel Pérez González,et al.  A topological sub-structural approach for predicting human intestinal absorption of drugs. , 2004, European journal of medicinal chemistry.

[237]  A. Avdeef,et al.  PAMPA--a drug absorption in vitro model 11. Matching the in vivo unstirred water layer thickness by individual-well stirring in microtitre plates. , 2004, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[238]  Li Di,et al.  Combined application of parallel artificial membrane permeability assay and Caco-2 permeability assays in drug discovery. , 2004, Journal of pharmaceutical sciences.

[239]  Sarfaraz K. Niazi Waiver of In Vivo Bioavailability and Bioequivalence Studies for Immediate-Release Solid Oral Dosage Forms Based on a Biopharmaceutics Classification System , 2004, Handbook of Pharmaceutical Manufacturing Formulations, Third Edition.

[240]  H. Lennernäs,et al.  St John's Wort Decreases the Bioavailability of R‐ and S‐verapamil Through Induction of the First‐pass Metabolism , 2004, Clinical pharmacology and therapeutics.

[241]  Marival Bermejo,et al.  PAMPA--a drug absorption in vitro model 7. Comparing rat in situ, Caco-2, and PAMPA permeability of fluoroquinolones. , 2004, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[242]  A. Avdeef,et al.  In Vitro Permeability of Poorly Aqueous Soluble Compounds Using Different Solubilizers in the PAMPA Assay with Liquid Chromatography/Mass Spectrometry Detection , 2003, Pharmaceutical Research.

[243]  H. Lennernäs,et al.  Multiple transport mechanisms involved in the intestinal absorption and first‐pass extraction of fexofenadine , 2003, Clinical pharmacology and therapeutics.

[244]  Alex Avdeef,et al.  Absorption and Drug Development: Solubility, Permeability, and Charge State , 2003 .

[245]  Ismael Zamora,et al.  pH-Dependent Bidirectional Transport of Weakly Basic Drugs Across Caco-2 Monolayers: Implications for Drug–Drug Interactions , 2003, Pharmaceutical Research.

[246]  P. Augustijns,et al.  Biological, pharmaceutical, and analytical considerations with respect to the transport media used in the absorption screening system, Caco-2. , 2003, Journal of pharmaceutical sciences.

[247]  H. van de Waterbeemd,et al.  ADMET in silico modelling: towards prediction paradise? , 2003, Nature reviews. Drug discovery.

[248]  H. Lennernäs,et al.  The effect of ketoconazole on the in vivo intestinal permeability of fexofenadine using a regional perfusion technique. , 2003, British journal of clinical pharmacology.

[249]  Christel A. S. Bergström,et al.  Absorption classification of oral drugs based on molecular surface properties. , 2003, Journal of medicinal chemistry.

[250]  A. Mitra,et al.  Enhanced transport of a novel anti-HIV agent--cosalane and its congeners across human intestinal epithelial (Caco-2) cell monolayers. , 2003, International journal of pharmaceutics.

[251]  Gilles Klopman,et al.  ADME evaluation. 2. A computer model for the prediction of intestinal absorption in humans. , 2002, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[252]  Tingjun Hou,et al.  ADME evaluation in drug discovery , 2002, Journal of molecular modeling.

[253]  P. Augustijns,et al.  Implementation of the caco-2 cell culture model as a predictive tool for the oral absorption of drugs. In-house evaluation procedures. , 2002, Journal de pharmacie de Belgique.

[254]  Gordon L. Amidon,et al.  Comparison of Human Duodenum and Caco-2 Gene Expression Profiles for 12,000 Gene Sequences Tags and Correlation with Permeability of 26 Drugs , 2002, Pharmaceutical Research.

[255]  A. Ungell Transport studies using intestinal tissue ex vivo , 2002 .

[256]  R. Borchardt,et al.  Caco-2 cell monolayers as a model for studies of drug transport across human intestinal epithelium , 2002 .

[257]  F. Ahrens,et al.  Paracellular tightness and catabolism restrict histamine permeation in the proximal colon of pigs , 2002, Pflügers Archiv.

[258]  Stephen R. Johnson,et al.  Molecular properties that influence the oral bioavailability of drug candidates. , 2002, Journal of medicinal chemistry.

[259]  Kin-Kai Hwang,et al.  A comparative study of artificial membrane permeability assay for high throughput profiling of drug absorption potential. , 2002, European journal of medicinal chemistry.

[260]  M. Hashida,et al.  Prediction of Caco-2 cell permeability using a combination of MO-calculation and neural network. , 2002, International journal of pharmaceutics.

[261]  G. Amidon,et al.  The effect of amiloride on the in vivo effective permeability of amoxicillin in human jejunum: experience from a regional perfusion technique. , 2002, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[262]  H. Lennernäs,et al.  The influence of caprate on rectal absorption of phenoxymethylpenicillin: experience from an in‐vivo perfusion in humans , 2002, The Journal of pharmacy and pharmacology.

[263]  William J Egan,et al.  Prediction of intestinal permeability. , 2002, Advanced drug delivery reviews.

[264]  E. De Clercq,et al.  Intestinal absorption characteristics of the low solubility thiocarboxanilide UC-781. , 2002, International journal of pharmaceutics.

[265]  C. O'Morain,et al.  Omeprazole increases permeability across isolated rat gastric mucosa pre‐treated with an acid secretagogue , 2002, The Journal of pharmacy and pharmacology.

[266]  T. Abe,et al.  Transcellular Transport of Organic Anions Across a Double-transfected Madin-Darby Canine Kidney II Cell Monolayer Expressing Both Human Organic Anion-transporting Polypeptide (OATP2/SLC21A6) and Multidrug Resistance-associated Protein 2 (MRP2/ABCC2)* , 2002, The Journal of Biological Chemistry.

[267]  J. Wynne Stirred, Not Shaken , 2002, Annals of Internal Medicine.

[268]  P Augustijns,et al.  Simulated intestinal fluid as transport medium in the Caco-2 cell culture model. , 2002, International journal of pharmaceutics.

[269]  M. Strafford,et al.  Drug absorption in vitro model: filter-immobilized artificial membranes. 2. Studies of the permeability properties of lactones in Piper methysticum Forst. , 2001, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[270]  I. Hidalgo,et al.  Assessing the absorption of new pharmaceuticals. , 2001, Current topics in medicinal chemistry.

[271]  K. Terada,et al.  Optimized conditions of bio-mimetic artificial membrane permeation assay. , 2001, International journal of pharmaceutics.

[272]  K. Vukovinsky,et al.  Comparison of the gravimetric, phenol red, and 14C-PEG-3350 methods to determine water absorption in the rat single-pass intestinal perfusion model , 2001, AAPS PharmSci.

[273]  A. Nomeir,et al.  Permeability of lipophilic compounds in drug discovery using in-vitro human absorption model, Caco-2. , 2001, International journal of pharmaceutics.

[274]  G Beck,et al.  Evaluation of human intestinal absorption data and subsequent derivation of a quantitative structure-activity relationship (QSAR) with the Abraham descriptors. , 2001, Journal of pharmaceutical sciences.

[275]  U Norinder,et al.  Experimental and computational screening models for the prediction of intestinal drug absorption. , 2001, Journal of medicinal chemistry.

[276]  B. Faller,et al.  High-throughput permeability pH profile and high-throughput alkane/water log P with artificial membranes. , 2001, Journal of medicinal chemistry.

[277]  I. Wilding,et al.  Oral drug absorption studies: the best model for man is man! , 2001, Drug discovery today.

[278]  P. Langguth,et al.  Pretreatment with potent P-glycoprotein ligands may increase intestinal secretion in rats. , 2001, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[279]  J. H. Kou,et al.  Effect of solubilizing excipients on permeation of poorly water-soluble compounds across Caco-2 cell monolayers. , 2000, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[280]  B. Aungst,et al.  The Influence of Donor and Reservoir Additives on Caco-2 Permeability and Secretory Transport of HIV Protease Inhibitors and Other Lipophilic Compounds , 2000, Pharmaceutical Research.

[281]  John G. Topliss,et al.  QSAR Model for Drug Human Oral Bioavailability1 , 2000 .

[282]  Lawrence X. Yu,et al.  Predicting Human Oral Bioavailability of a Compound: Development of a Novel Quantitative Structure-Bioavailability Relationship , 2000, Pharmaceutical Research.

[283]  M. Kataoka,et al.  Optimized conditions for prediction of intestinal drug permeability using Caco-2 cells. , 2000, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[284]  Y. Lo,et al.  Effects of sodium deoxycholate and sodium caprate on the transport of epirubicin in human intestinal epithelial Caco-2 cell layers and everted gut sacs of rats. , 2000, Biochemical pharmacology.

[285]  Lawrence X. Yu,et al.  Vitamin E-TPGS Increases Absorption Flux of an HIV Protease Inhibitor by Enhancing Its Solubility and Permeability1 , 1999, Pharmaceutical Research.

[286]  Y Zhang,et al.  Intestinal MDR transport proteins and P-450 enzymes as barriers to oral drug delivery. , 1999, Journal of controlled release : official journal of the Controlled Release Society.

[287]  G L Amidon,et al.  A compartmental absorption and transit model for estimating oral drug absorption. , 1999, International journal of pharmaceutics.

[288]  R. Oertel,et al.  Intestinal secretion of intravenous talinolol is inhibited by luminal R‐verapamil , 1999, Clinical pharmacology and therapeutics.

[289]  R. Walgren,et al.  The Influence of Plasma Binding on Absorption/Exsorption in the Caco‐2 Model of Human Intestinal Absorption , 1999, The Journal of pharmacy and pharmacology.

[290]  C. Lartigue,et al.  Transepithelial transport of bepridil in the human intestinal cell line, Caco-2, using two media, DMEMc and HBSS. , 1999, International journal of pharmaceutics.

[291]  A. Daugherty,et al.  Transcellular uptake mechanisms of the intestinal epithelial barrier Part one. , 1999, Pharmaceutical science & technology today.

[292]  H Lennernäs,et al.  Jejunal permeability in humans in vivo and rats in situ: investigation of molecular size selectivity and solvent drag. , 1999, Acta physiologica Scandinavica.

[293]  H Lennernäs,et al.  Correlation of human jejunal permeability (in vivo) of drugs with experimentally and theoretically derived parameters. A multivariate data analysis approach. , 1998, Journal of medicinal chemistry.

[294]  Peter C. Jurs,et al.  Prediction of Human Intestinal Absorption of Drug Compounds from Molecular Structure , 1998, J. Chem. Inf. Comput. Sci..

[295]  H Lennernäs,et al.  Human intestinal permeability. , 1998, Journal of pharmaceutical sciences.

[296]  K Gubernator,et al.  Physicochemical high throughput screening: parallel artificial membrane permeation assay in the description of passive absorption processes. , 1998, Journal of medicinal chemistry.

[297]  Ulf Norinder,et al.  Theoretical Calculation and Prediction of Caco-2 Cell Permeability Using MolSurf Parametrization and PLS Statistics , 1997, Pharmaceutical Research.

[298]  D. Shen,et al.  Enzyme-catalyzed processes of first-pass hepatic and intestinal drug extraction. , 1997, Advanced drug delivery reviews.

[299]  H Lennernäs,et al.  Human Jejunal Effective Permeability and Its Correlation with Preclinical Drug Absorption Models , 1997, The Journal of pharmacy and pharmacology.

[300]  G. Amidon,et al.  A Residence‐Time Distribution Analysis of the Hydrodynamics within the Intestine in Man during a Regional Single‐pass Perfusion with Loc‐I‐Gut: In‐vivo Permeability Estimation , 1997, The Journal of pharmacy and pharmacology.

[301]  Kristina Luthman,et al.  Polar Molecular Surface Properties Predict the Intestinal Absorption of Drugs in Humans , 1997, Pharmaceutical Research.

[302]  S. Nylander,et al.  Jejunal Permeability: A Comparison Between the Ussing Chamber Technique and the Single-Pass Perfusion in Humans , 1997, Pharmaceutical Research.

[303]  Hitoshi Sezaki,et al.  Analysis of Drug Permeation Across Caco-2 Monolayer: Implication for Predicting In Vivo Drug Absorption , 1997, Pharmaceutical Research.

[304]  F. Lombardo,et al.  Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings , 1997 .

[305]  G Folkers,et al.  Review of theoretical passive drug absorption models: historical background, recent developments and limitations. , 1996, Pharmaceutica acta Helvetiae.

[306]  Hans Lennernäs,et al.  Comparison Between Permeability Coefficients in Rat and Human Jejunum , 1996, Pharmaceutical Research.

[307]  Akira Tsuji,et al.  Carrier-Mediated Intestinal Transport of Drugs , 1996, Pharmaceutical Research.

[308]  G L Amidon,et al.  Transport approaches to the biopharmaceutical design of oral drug delivery systems: prediction of intestinal absorption. , 1996, Advanced drug delivery reviews.

[309]  O. H. Chan,et al.  Absorption of Cam-2445, and NK1 neurokinin receptor antagonist: in vivo, in situ, and in vitro evaluations. , 1996, Journal of pharmaceutical sciences.

[310]  M Rowland,et al.  Differentiation of absorption and first‐pass gut and hepatic metabolism in humans: Studies with cyclosporine , 1995, Clinical pharmacology and therapeutics.

[311]  M. Zeidel,et al.  The relationship between membrane fluidity and permeabilities to water, solutes, ammonia, and protons , 1995, The Journal of general physiology.

[312]  H. Lennernäs,et al.  Regional Jejunal Perfusion, a New in Vivo Approach to Study Oral Drug Absorption in Man , 1995, Pharmaceutical Research.

[313]  J. Crison,et al.  A Theoretical Basis for a Biopharmaceutic Drug Classification: The Correlation of in Vitro Drug Product Dissolution and in Vivo Bioavailability , 1995, Pharmaceutical Research.

[314]  T. Gramatté Griseofulvin absorption from different sites in the human small intestine , 1994, Biopharmaceutics & drug disposition.

[315]  H. Lennernäs,et al.  The Influence of Net Water Absorption on the Permeability of Antipyrine and Levodopa in the Human Jejunum , 1994, Pharmaceutical Research.

[316]  J. Hadgraft,et al.  Effect of supersaturation on membrane transport: 2. Piroxicam , 1994 .

[317]  H. Lennernäs,et al.  Intestinal drug absorption during induced net water absorption in man; a mechanistic study using antipyrine, atenolol and enalaprilat. , 1994, British journal of clinical pharmacology.

[318]  T. Gramatté,et al.  Paracetamol absorption from different sites in the human small intestine. , 1994, British journal of clinical pharmacology.

[319]  P. Augustijns,et al.  Evidence for a polarized efflux system in CACO-2 cells capable of modulating cyclosporin A transport. , 1993, Biochemical and biophysical research communications.

[320]  Per Artursson,et al.  Selective Paracellular Permeability in Two Models of Intestinal Absorption: Cultured Monolayers of Human Intestinal Epithelial Cells and Rat Intestinal Segments , 1993, Pharmaceutical Research.

[321]  Gordon L. Amidon,et al.  Estimating the Fraction Dose Absorbed from Suspensions of Poorly Soluble Compounds in Humans: A Mathematical Model , 1993, Pharmaceutical Research.

[322]  W. Rubas,et al.  Permeability Characteristics of Various Intestinal Regions of Rabbit, Dog, and Monkey , 1992, Pharmaceutical Research.

[323]  P. Artursson,et al.  A new diffusion chamber system for the determination of drug permeability coefficients across the human intestinal epithelium that are independent of the unstirred water layer. , 1992, Biochimica et biophysica acta.

[324]  J. Widdicombe THE ABSORPTION OF DRUGS. , 1992, California state journal of medicine.

[325]  P. Artursson,et al.  Epithelial transport of drugs in cell culture. VII: Effects of pharmaceutical surfactant excipients and bile acids on transepithelial permeability in monolayers of human intestinal epithelial (Caco-2) cells. , 1992, Journal of pharmaceutical sciences.

[326]  Patrick J. Sinko,et al.  Predicting Fraction Dose Absorbed in Humans Using a Macroscopic Mass Balance Approach , 1991, Pharmaceutical Research.

[327]  K. Hillgren,et al.  Characterization of the Unstirred Water Layer in Caco-2 Cell Monolayers Using a Novel Diffusion Apparatus , 1991, Pharmaceutical Research.

[328]  R. Conradi,et al.  Caco-2 Cell Monolayers as a Model for Drug Transport Across the Intestinal Mucosa , 1990, Pharmaceutical Research.

[329]  P. Artursson,et al.  Epithelial transport of drugs in cell culture. II: Effect of extracellular calcium concentration on the paracellular transport of drugs of different lipophilicities across monolayers of intestinal epithelial (Caco-2) cells. , 1990, Journal of pharmaceutical sciences.

[330]  P. Artursson,et al.  Epithelial transport of drugs in cell culture. I: A model for studying the passive diffusion of drugs over intestinal absorptive (Caco-2) cells. , 1990, Journal of pharmaceutical sciences.

[331]  Thomas J. Raub,et al.  Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. , 1989, Gastroenterology.

[332]  D. A. Johnson,et al.  Determination of intrinsic membrane transport parameters from perfused intestine experiments: a boundary layer approach to estimating the aqueous and unbiased membrane permeabilities. , 1988, Journal of theoretical biology.

[333]  W. Curatolo The Lipoidal Permeability Barriers of the Skin and Alimentary Tract , 1987, Pharmaceutical Research.

[334]  Gordon M. Crippen,et al.  Atomic physicochemical parameters for three-dimensional-structure-directed quantitative structure-activity relationships. 2. Modeling dispersive and hydrophobic interactions , 1987, J. Chem. Inf. Comput. Sci..

[335]  M. Lucas Determination of acid surface pH in vivo in rat proximal jejunum. , 1983, Gut.

[336]  W. Higuchi,et al.  Theoretical model studies of intestinal drug absorption. IV. Bile acid transport at premicellar concentrations across diffusion layer-membrane barrier. , 1974, Journal of pharmaceutical sciences.

[337]  D. Black,et al.  Drug permeation through membranes. I. Effect of various substances on amobarbital permeation through polydimethylsiloxane. , 1973, Journal of pharmaceutical sciences.

[338]  J. Diamond,et al.  Molecular forces governing non-electrolyte permeation through cell membranes , 1969, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[339]  E R Garrett,et al.  Evaluation, control, and prediction of drug diffusion through polymeric membranes. 3. Diffusion of barbiturates, phenylalkylamines, dextromethorphan, progesterone, and other drugs. , 1968, Journal of pharmaceutical sciences.

[340]  J. Wilson,et al.  Surface area of the small intestine in man. , 1967, Gut.

[341]  B. Brodie,et al.  Absorption of drugs from the rat small intestine. , 1958, The Journal of pharmacology and experimental therapeutics.

[342]  H H USSING,et al.  Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. , 1951, Acta physiologica Scandinavica.

[343]  Filippos Kesisoglou,et al.  Food Effect Projections via Physiologically Based Pharmacokinetic Modeling: Predictive Case Studies. , 2019, Journal of pharmaceutical sciences.

[344]  Caitriona M. O'Driscoll,et al.  In Vitro and In Silico ADME Prediction , 2018 .

[345]  P. Augustijns,et al.  Assessment of Passive Intestinal Permeability Using an Artificial Membrane Insert System. , 2018, Journal of pharmaceutical sciences.

[346]  J. Hughey,et al.  In Vitro-In Vivo Correlations of Carbamazepine Nanodispersions for Application in Formulation Development. , 2018, Journal of pharmaceutical sciences.

[347]  M. Brandl,et al.  Dynamic dissolution‐/permeation‐testing of nano‐ and microparticle formulations of fenofibrate , 2017, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[348]  M. Miyake,et al.  Prediction of drug intestinal absorption in human using the Ussing chamber system: A comparison of intestinal tissues from animals and humans , 2017, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[349]  M. Brandl,et al.  Pharmaceutics, Drug Delivery and Pharmaceutical Technology Solid Phospholipid Dispersions for Oral Delivery of Poorly Soluble Drugs: Investigation Into Celecoxib Incorporation and Solubility-In Vitro Permeability Enhancement , 2016 .

[350]  L. Conti,et al.  in vitro and in vivo , 2016 .

[351]  K. Verhoeckx,et al.  The Impact of Food Bioactives on Health , 2015, Springer International Publishing.

[352]  K. Verhoeckx,et al.  Ussing Chamber -- The Impact of Food Bioactives on Health: in vitro and ex vivo models , 2015 .

[353]  A Rostami-Hodjegan,et al.  Absolute abundance and function of intestinal drug transporters: a prerequisite for fully mechanistic in vitro-in vivo extrapolation of oral drug absorption. , 2013, Biopharmaceutics & drug disposition.

[354]  D. Blacker Food for thought. , 2013, JAMA neurology.

[355]  Catherine J. Tilton,et al.  Residence Time , 2009, Encyclopedia of Biometrics.

[356]  Donna A. Volpe,et al.  Drug Permeability Studies in Regulatory Biowaiver Applications , 2008 .

[357]  Lawrence X. Yu,et al.  Drug Absorption Principles , 2008 .

[358]  B. Griffin,et al.  Models of the Small Intestine , 2008 .

[359]  A. Ungell,et al.  Selection of Solvent Systems for Membrane-, Cell- and Tissue-Based Permeability Assessment , 2007 .

[360]  David J Brayden,et al.  Myosin Light Chain Kinase Inhibition: Correction of Increased Intestinal Epithelial Permeability In Vitro , 2007, Pharmaceutical Research.

[361]  M. Brandl,et al.  Drug permeability across a phospholipid vesicle based barrier: a novel approach for studying passive diffusion. , 2006, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[362]  T. Murakami,et al.  Expression and function of efflux drug transporters in the intestine. , 2006, Pharmacology & therapeutics.

[363]  S. Neuhoff Refined in vitro Models for Prediction of Intestinal Drug Transport : Role of pH and Extracellular Additives in the Caco-2 Cell Model , 2005 .

[364]  B. Hirst,et al.  The ABCs of drug transport in intestine and liver: efflux proteins limiting drug absorption and bioavailability. , 2004, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[365]  Lawrence X. Yu,et al.  In vitro testing of drug absorption for drug 'developability' assessment: forming an interface between in vitro preclinical data and clinical outcome. , 2004, Current opinion in drug discovery & development.

[366]  Monique Alric,et al.  A Dynamic Artificial Gastrointestinal System for Studying the Behavior of Orally Administered Drug Dosage Forms Under Various Physiological Conditions , 2004, Pharmaceutical Research.

[367]  U. Klotz,et al.  Site-dependent small intestinal absorption of ranitidine , 2004, European Journal of Clinical Pharmacology.

[368]  H. Lennernäs,et al.  Regional Rectal Perfusion: A New in Vivo Approach to Study Rectal Drug Absorption in Man , 2004, Pharmaceutical Research.

[369]  Patrick J. Sinko,et al.  Estimating Human Oral Fraction Dose Absorbed: A Correlation Using Rat Intestinal Membrane Permeability for Passive and Carrier-Mediated Compounds , 2004, Pharmaceutical Research.

[370]  S. E. Williams,et al.  the Effect of , 2004 .

[371]  Anders Karlén,et al.  Hydrogen bonding descriptors in the prediction of human in vivo intestinal permeability. , 2003, Journal of molecular graphics & modelling.

[372]  Y Zhang,et al.  The Gut as a Barrier to Drug Absorption , 2001, Clinical pharmacokinetics.

[373]  P. Artursson,et al.  Integrity and metabolism of human ileal mucosa in vitro in the Ussing chamber. , 1998, Acta physiologica Scandinavica.

[374]  P. Artursson,et al.  Absorption enhancement through intracellular regulation of tight junction permeability by medium chain fatty acids in Caco-2 cells. , 1998, The Journal of pharmacology and experimental therapeutics.

[375]  K. Luthman,et al.  Correlation of drug absorption with molecular surface properties. , 1996, Journal of pharmaceutical sciences.

[376]  Han van de Waterbeemd,et al.  Estimation of Caco‐2 Cell Permeability using Calculated Molecular Descriptors , 1996 .

[377]  S. Pond,et al.  First-Pass Elimination Basic Concepts and Clinical Consequences , 1984, Clinical pharmacokinetics.

[378]  M. Pinto,et al.  Enterocyte-like differentiation and polarization of the human colon carcinoma cell line Caco-2 in culture , 1983 .

[379]  W. Higuchi,et al.  Quantitative mechanistic studies in simultaneous fluid flow and intestinal absorption using steroids as model solutes , 1980 .

[380]  T. Tozer Chapter 5 Pharmacokinetic Principles Relevant to Bioavailability Studies , 1979 .

[381]  L. Manson,et al.  Intestinal Absorption , 1974, Biomembranes.