Ultrafast laser processing of materials: from science to industry

Processing of materials by ultrashort laser pulses has evolved significantly over the last decade and is starting to reveal its scientific, technological and industrial potential. In ultrafast laser manufacturing, optical energy of tightly focused femtosecond or picosecond laser pulses can be delivered to precisely defined positions in the bulk of materials via two-/multi-photon excitation on a timescale much faster than thermal energy exchange between photoexcited electrons and lattice ions. Control of photo-ionization and thermal processes with the highest precision, inducing local photomodification in sub-100-nm-sized regions has been achieved. State-of-the-art ultrashort laser processing techniques exploit high 0.1–1 μm spatial resolution and almost unrestricted three-dimensional structuring capability. Adjustable pulse duration, spatiotemporal chirp, phase front tilt and polarization allow control of photomodification via uniquely wide parameter space. Mature opto-electrical/mechanical technologies have enabled laser processing speeds approaching meters-per-second, leading to a fast lab-to-fab transfer. The key aspects and latest achievements are reviewed with an emphasis on the fundamental relation between spatial resolution and total fabrication throughput. Emerging biomedical applications implementing micrometer feature precision over centimeter-scale scaffolds and photonic wire bonding in telecommunications are highlighted.

[1]  Aleksandr Ovsianikov,et al.  Hydrogels for Two‐Photon Polymerization: A Toolbox for Mimicking the Extracellular Matrix , 2013 .

[2]  C. Sheppard,et al.  Gaussian-beam theory of lenses with annular aperture , 1978 .

[3]  T. Klar,et al.  Sub-Abbe resolution: from STED microscopy to STED lithography , 2014 .

[4]  Saulius Juodkazis,et al.  Surface-texturing of sapphire by femtosecond laser pulses for photonic applications , 2010 .

[5]  Albertas Žukauskas,et al.  Improvement of the Fabrication Accuracy of Fiber Tip Microoptical Components via Mode Field Expansion , 2014 .

[6]  A. Rode,et al.  Phase Transformation in Laser‐Induced Micro‐Explosion in Olivine (Fe,Mg)2SiO4 , 2014 .

[7]  Saulius Juodkazis,et al.  Is the nano-explosion really microscopic? , 2009 .

[8]  Saulius Juodkazis,et al.  Three-dimensional woodpile photonic crystal templates for the infrared spectral range. , 2004, Optics letters.

[9]  Georg von Freymann,et al.  The Materials Challenge in Diffraction‐Unlimited Direct‐Laser‐Writing Optical Lithography , 2010, Advanced materials.

[10]  Saulius Juodkazis,et al.  Control over the Crystalline State of Sapphire , 2006 .

[11]  B. Chichkov,et al.  Multi-focus two-photon polymerization technique based on individually controlled phase modulation. , 2010, Optics express.

[12]  Michel Meunier,et al.  Synthesis of colloidal nanoparticles during femtosecond laser ablation of gold in water , 2003 .

[13]  Erik H. Waller,et al.  Three‐Dimensional μ‐Printing: An Enabling Technology , 2015 .

[14]  Saulius Juodkazis,et al.  Photopolymerized microscopic vortex beam generators: Precise delivery of optical orbital angular momentum , 2010 .

[15]  Hong-Bo Sun,et al.  Aqueous multiphoton lithography with multifunctional silk-centred bio-resists , 2015, Nature Communications.

[16]  Martin Wegener,et al.  Ultrafast polymerization inhibition by stimulated emission depletion for three-dimensional nanolithography. , 2012, Advanced materials.

[17]  Qidai Chen,et al.  Protein-based soft micro-optics fabricated by femtosecond laser direct writing , 2014, Light: Science & Applications.

[18]  Hong-Bo Sun,et al.  Dynamic laser prototyping for biomimetic nanofabrication , 2014 .

[19]  M. Malinauskas,et al.  Direct laser fabrication of composite material 3D microstructured scaffolds , 2013, 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC.

[20]  E. Mazur,et al.  Femtosecond laser micromachining in transparent materials , 2008 .

[21]  Hong‐Bo Sun,et al.  Multiple-spot parallel processing for laser micronanofabrication , 2005 .

[22]  Masaaki Sakakura,et al.  Photosensitivity control of an isotropic medium through polarization of light pulses with tilted intensity front. , 2011, Optics express.

[23]  Martin Wegener,et al.  Tailored 3D Mechanical Metamaterials Made by Dip‐in Direct‐Laser‐Writing Optical Lithography , 2012, Advanced materials.

[24]  K Staliunas,et al.  Flat lensing in the visible frequency range by woodpile photonic crystals. , 2013, Optics letters.

[25]  M. Wegener,et al.  Two‐Component Polymer Scaffolds for Controlled Three‐Dimensional Cell Culture , 2011, Advanced materials.

[26]  Martynas Beresna,et al.  Seemingly unlimited lifetime data storage in nanostructured glass. , 2014, Physical review letters.

[27]  Saulius Juodkazis,et al.  Generation of high energy density by fs-laser-induced confined microexplosion , 2013 .

[28]  Aleksandr Ovsianikov,et al.  Laser 3D Printing with Sub‐Microscale Resolution of Porous Elastomeric Scaffolds for Supporting Human Bone Stem Cells , 2015, Advanced healthcare materials.

[29]  Satoshi Kawata,et al.  Submicron diamond-lattice photonic crystals produced by two-photon laser nanofabrication , 2003 .

[30]  David Hillerkuss,et al.  Photonic Wire Bonds for Terabit/s Chip-to-Chip Interconnects , 2011, 1111.0651.

[31]  Yoshio Hayasaki,et al.  Adaptive optimization of a hologram in holographic femtosecond laser processing system. , 2009, Optics letters.

[32]  J. Nishii,et al.  Femtosecond laser-assisted three-dimensional microfabrication in silica. , 2001, Optics letters.

[33]  B. Mazzolai,et al.  Biomimicry at the nanoscale: current research and perspectives of two-photon polymerization. , 2015, Nanoscale.

[34]  Aleksandr Ovsianikov,et al.  Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties. , 2004, Optics express.

[35]  Yong‐Lai Zhang,et al.  Designable 3D nanofabrication by femtosecond laser direct writing , 2010 .

[36]  M. Gedvilas,et al.  Flexible periodical micro- and nano-structuring of a stainless steel surface using dual-wavelength double-pulse picosecond laser irradiation , 2015 .

[37]  Saulius Juodkazis,et al.  3D Microporous Scaffolds Manufactured via Combination of Fused Filament Fabrication and Direct Laser Writing Ablation , 2014, Micromachines.

[38]  W. Austin Elam,et al.  Physical Biology of the Cell , 2014, The Yale Journal of Biology and Medicine.

[39]  Hiroaki Misawa,et al.  Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin , 1999 .

[40]  Nemanja Jovanovic,et al.  Integrated photonic building blocks for next-generation astronomical instrumentation I: the multimode waveguide , 2012 .

[41]  Saulius Juodkazis,et al.  Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications , 2009 .

[42]  Saulius Juodkazis,et al.  Ultra-pure, water-dispersed Au nanoparticles produced by femtosecond laser ablation and fragmentation , 2013, International journal of nanomedicine.

[43]  Saulius Juodkazis,et al.  Freestanding and movable photonic microstructures fabricated by photopolymerization with femtosecond laser pulses , 2010 .

[44]  K. Miura,et al.  Writing waveguides in glass with a femtosecond laser. , 1996, Optics letters.

[45]  T. Klar,et al.  Nano-anchors with single protein capacity produced with STED lithography. , 2013, Nano letters.

[46]  Georg von Freymann,et al.  Multi foci with diffraction limited resolution. , 2013, Optics express.

[47]  K. Sugioka,et al.  Ultrafast lasers—reliable tools for advanced materials processing , 2014, Light: Science & Applications.

[48]  Y. Yue,et al.  Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications , 2016 .

[49]  Maria Farsari,et al.  Three‐Dimensional Metallic Photonic Crystals with Optical Bandgaps , 2012, Advanced materials.

[50]  P. Bártolo,et al.  Micro Additive manufacturing using ulra short laser pulses , 2015 .

[51]  Heungsoo Kim,et al.  Laser-Induced Forward Transfer of Functional Materials: Advances and Future Directions , 2014 .

[52]  P. So,et al.  High-throughput three-dimensional lithographic microfabrication. , 2010, Optics Letters.

[53]  Jaroslaw Jacak,et al.  120 nm resolution and 55 nm structure size in STED-lithography. , 2013, Optics express.

[54]  M. Malinauskas Femtosecond Pulse Light Filament-Assisted Microfabrication of Biodegradable Polylactic Acid (PLA) Material , 2015 .

[55]  Joss Bland-Hawthorn,et al.  Astrophotonics: a new era for astronomical instruments. , 2009, Optics express.

[56]  Molly M Stevens,et al.  Fabrication and in vitro characterization of bioactive glass composite scaffolds for bone regeneration , 2013, Biofabrication.

[57]  Stefan Linden,et al.  Polarization Stop Bands in Chiral Polymeric Three‐Dimensional Photonic Crystals , 2007 .

[58]  Yves Bellouard,et al.  Three-Dimensional Glass Monolithic Micro-Flexure Fabricated by Femtosecond Laser Exposure and Chemical Etching , 2014, Micromachines.

[59]  Koji Ikuta,et al.  Three-dimensional microfabrication by use of single-photon-absorbed polymerization , 2000 .

[60]  P. Herman,et al.  Chemical-assisted femtosecond laser writing of lab-in-fibers. , 2014, Lab on a chip.

[61]  Mangirdas Malinauskas,et al.  Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique , 2012 .

[62]  M. Wegener,et al.  An elasto-mechanical unfeelability cloak made of pentamode metamaterials , 2014, Nature Communications.

[63]  Koji Sugioka,et al.  In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting , 2015 .

[64]  Saulius Juodkazis,et al.  Warm dense matter at the bench-top: Fs-laser-induced confined micro-explosion , 2012 .

[65]  S. Juodkazis,et al.  Surface and bulk structuring of materials by ripples with long and short laser pulses: Recent advances , 2014 .

[66]  W. Kautek,et al.  Femtosecond laser ablation of silicon–modification thresholds and morphology , 2002 .

[67]  Nemanja Jovanovic,et al.  Multiband processing of multimode light: combining 3D photonic lanterns with waveguide Bragg gratings , 2013, 1311.0549.

[68]  Satoshi Kawata,et al.  Elastic force analysis of functional polymer submicron oscillators , 2001 .

[69]  J. Nishii,et al.  Generation and recombination of defects in vitreous silica induced by irradiation with a near-infrared femtosecond laser , 2000 .

[70]  Mangirdas Malinauskas,et al.  Tuning the refractive index in 3D direct laser writing lithography: towards GRIN microoptics , 2015 .

[71]  Saulius Juodkazis,et al.  Femtosecond laser‐assisted formation of channels in sapphire using KOH solution , 2008 .

[72]  J. Kleinert,et al.  Laser direct ablation for patterning printed wiring boards using ultrafast lasers and high speed beam delivery architectures , 2013, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[73]  K. Itoh,et al.  Femtosecond Laser Direct Joining of Copper with Polyethylene Terephthalate , 2013 .

[74]  Focal varying microlens array. , 2015, Optics letters.

[75]  Luke P. Lee,et al.  Bioinspired Fabrication of High‐Quality 3D Artificial Compound Eyes by Voxel‐Modulation Femtosecond Laser Writing for Distortion‐Free Wide‐Field‐of‐View Imaging , 2014 .

[76]  Saulius Juodkazis,et al.  High 90% efficiency Bragg gratings formed in fused silica by femtosecond Gauss-Bessel laser beams , 2013 .

[77]  Satoshi Kawata,et al.  Shape precompensation in two-photon laser nanowriting of photonic lattices , 2004 .

[78]  G. Kim,et al.  Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy , 2013 .

[79]  P. Ormos,et al.  Holographic multi-focus 3D two-photon polymerization with real-time calculated holograms. , 2014, Optics express.

[80]  Hiroshi Iwai,et al.  Roadmap for 22nm and beyond (Invited Paper) , 2009 .

[81]  Georg von Freymann,et al.  Active aberration- and point-spread-function control in direct laser writing. , 2012, Optics express.

[82]  Feng Chen,et al.  Optical waveguides in crystalline dielectric materials produced by femtosecond‐laser micromachining , 2014 .

[83]  F. De Angelis,et al.  Micro-Optics Fabrication on Top of Optical Fibers Using Two-Photon Lithography , 2010, IEEE Photonics Technology Letters.

[84]  Aleksandr Ovsianikov,et al.  Laser photofabrication of cell-containing hydrogel constructs. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[85]  J. Fourkas Nanoscale Photolithography with Visible Light , 2010 .

[86]  Boris N. Chichkov,et al.  Materials processing: Two-photon fabrication , 2009 .

[87]  Martin Wegener,et al.  Direct Laser Writing of Three‐ Dimensional Photonic Crystals with a Complete Photonic Bandgap in Chalcogenide Glasses , 2006 .

[88]  Osvaldas Ruksenas,et al.  Corneal stromal ablation with femtosecond ultraviolet pulses in rabbits , 2013, Journal of cataract and refractive surgery.

[89]  M. Wegener,et al.  Gold Helix Photonic Metamaterial as Broadband Circular Polarizer , 2009, Science.

[90]  Saulius Juodkazis,et al.  Thermal and optical properties of the femtosecond-laser-structured and stress-induced birefringent regions in sapphire. , 2010, Optics express.

[91]  Miceli,et al.  Diffraction-free beams. , 1987, Physical review letters.

[92]  Jeremy L O'Brien,et al.  Laser written waveguide photonic quantum circuits. , 2009, Optics express.

[93]  H. Misawa,et al.  Chirp effect in hard X-ray generation from liquid target when irradiated by femtosecond pulses. , 2008, Optics express.

[94]  Min Gu,et al.  Acrylate‐Based Photopolymer for Two‐Photon Microfabrication and Photonic Applications , 2005 .

[95]  Martin Wegener,et al.  Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy [Invited] , 2011, 1105.5703.

[96]  Hong-Bo Sun,et al.  A light-driven turbine-like micro-rotor and study on its light-to-mechanical power conversion efficiency , 2012 .

[97]  Alexander Jesacher,et al.  Adaptive aberration compensation for three-dimensional micro-fabrication of photonic crystals in lithium niobate. , 2011, Optics express.

[98]  G. Lyons,et al.  Image-inspired 3D multiphoton excited fabrication of extracellular matrix structures by modulated raster scanning. , 2013, Optics express.

[99]  W. Freude,et al.  Connecting Silicon Photonic Circuits to Multicore Fibers by Photonic Wire Bonding , 2015, Journal of Lightwave Technology.

[100]  J. Fischer,et al.  Three‐dimensional optical laser lithography beyond the diffraction limit , 2013 .

[101]  B. Chichkov,et al.  Multiphoton polymerization of hybrid materials , 2010 .

[102]  T A Birks,et al.  Ultrafast laser inscription of an integrated photonic lantern. , 2011, Optics express.

[103]  Mangirdas Malinauskas,et al.  Direct laser fabrication of composite material 3D microstructured scaffolds , 2013 .

[104]  P. Kazansky,et al.  Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass [Invited] , 2011 .

[105]  Mangirdas Malinauskas,et al.  Laser fabrication of various polymer microoptical components , 2012 .

[106]  Christian Eggeling,et al.  STED microscopy reveals crystal colour centres with nanometric resolution. , 2009 .

[107]  Stefan Hengsbach,et al.  High-strength cellular ceramic composites with 3D microarchitecture , 2014, Proceedings of the National Academy of Sciences.

[108]  Alexander Argyros,et al.  Photonic lanterns , 2015, 1503.03269.

[109]  R Schmogrow,et al.  Photonic wire bonding: a novel concept for chip-scale interconnects. , 2012, Optics express.

[110]  Peng Jin,et al.  Resist shaping for replication of micro-optical elements with continuous relief in fused silica. , 2010, Optics letters.

[111]  Saulius Juodkazis,et al.  Laser-induced microexplosion confined in a bulk of silica: formation of nanovoids , 2006 .

[112]  S. Juodkazis,et al.  Effect of refractive index-mismatch on laser microfabrication in silica glass , 2003 .

[113]  S. Juodkazis,et al.  Templating and Replication of Spiral Photonic Crystals for Silicon Photonics , 2008, IEEE Journal of Selected Topics in Quantum Electronics.

[114]  James A. Piper,et al.  Ultrafast laser written active devices , 2009 .

[115]  Koji Sugioka,et al.  Femtosecond Laser Fabrication of Monolithically Integrated Microfluidic Sensors in Glass , 2014, Sensors.

[116]  Saulius Juodkazis,et al.  Mechanical properties and tuning of three-dimensional polymeric photonic crystals , 2007 .

[117]  John R. Tumbleston,et al.  Continuous liquid interface production of 3D objects , 2015, Science.

[118]  M. Wegener,et al.  Direct laser writing of three-dimensional photonic-crystal templates for telecommunications , 2004, Nature materials.

[119]  Bahaa E. A. Saleh,et al.  Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization , 2004 .

[120]  Saulius Juodkazis,et al.  Application of Bessel Beams for Microfabrication of Dielectrics by Femtosecond Laser , 2001 .

[121]  C. Fotakis,et al.  Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication. , 2008, ACS nano.

[122]  Martin Wegener,et al.  New Route to Three‐Dimensional Photonic Bandgap Materials: Silicon Double Inversion of Polymer Templates , 2006 .

[123]  Mangirdas Malinauskas,et al.  Preclinical study of SZ2080 material 3D microstructured scaffolds for cartilage tissue engineering made by femtosecond direct laser writing lithography , 2015, Biofabrication.

[124]  H. Misawa,et al.  Three-dimensional laser structuring of materials at tight focusing , 2007 .

[125]  Saulius Juodkazis,et al.  Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8 , 2006 .

[126]  R. Yen,et al.  Time-Resolved Reflectivity Measurements of Femtosecond-Optical-Pulse-Induced Phase Transitions in Silicon , 1983 .

[127]  Saulius Juodkazis,et al.  Two-photon lithography of nanorods in SU-8 photoresist , 2005 .

[128]  B. Chichkov,et al.  Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator , 2011, Biomedical optics express.

[129]  Satoshi Kawata,et al.  Finer features for functional microdevices , 2001, Nature.

[130]  Martin Wegener,et al.  3D Bi‐chiral Photonic Crystals: Three‐Dimensional Bi‐Chiral Photonic Crystals (Adv. Mater. 46/2009) , 2009 .

[131]  Saulius Juodkazis,et al.  Three-Dimensional Optical Data Storage in Vitreous Silica , 1998 .

[132]  Saulius Juodkazis,et al.  Laser-Matter Interaction in Transparent Materials: Confined Micro-explosion and Jet Formation , 2010 .

[133]  C. Fotakis,et al.  Diffusion-assisted high-resolution direct femtosecond laser writing. , 2012, ACS nano.

[134]  Saulius Juodkazis,et al.  Three-dimensional horizontal circular spiral photonic crystals with stop gaps below 1μm , 2006 .

[135]  J. Rogel-Salazar,et al.  Full characterization of Airy beams under physical principles , 2014, 1401.5225.

[136]  S. Kawata,et al.  Three-dimensional microfabrication with two-photon-absorbed photopolymerization. , 1997, Optics letters.

[137]  Patrick Mueller,et al.  3D direct laser writing using a 405  nm diode laser. , 2014, Optics letters.

[138]  J. P. Callan,et al.  Three-dimensional optical storage inside transparent materials. , 1996, Optics letters.

[139]  Martin Wegener,et al.  Three‐Dimensional Bi‐Chiral Photonic Crystals , 2009 .

[140]  Mangirdas Malinauskas,et al.  Micro-structured polymer scaffolds fabricated by direct laser writing for tissue engineering. , 2012, Journal of biomedical optics.

[141]  Martin Wegener,et al.  Dip-in depletion optical lithography of three-dimensional chiral polarizers. , 2013, Optics letters.

[142]  Peng Jin,et al.  Stop grating for perfect replication of micro Fresnel lens by thermal imprinting , 2012 .

[143]  Kurt Busch,et al.  Three‐Dimensional Nanostructures for Photonics , 2010 .

[144]  Costas Fotakis,et al.  Shrinkage of microstructures produced by two-photon polymerization of Zr-based hybrid photosensitive materials. , 2009, Optics express.

[145]  Saulius Juodkazis,et al.  Three-dimensional laser micro-sculpturing of silicone: towards bio-compatible scaffolds. , 2013, Optics express.

[146]  H. Xiaa,et al.  Designable 3 D nanofabrication by femtosecond laser direct writing , 2010 .

[147]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light , 1995 .

[148]  P. Kazansky,et al.  Airy beams generated by ultrafast laser-imprinted space-variant nanostructures in glass. , 2014, Optics letters.

[149]  Saulius Juodkazis,et al.  Evidence of superdense synthesized by ultrafast microexplosion , 2011, Nature communications.

[150]  Raman Kashyap,et al.  Making smart phones smarter with photonics. , 2014, Optics express.

[151]  Saulius Juodkazis,et al.  Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses. , 2010, Optics express.

[152]  Saulius Juodkazis,et al.  Luminescence and defect formation by visible and near-infrared irradiation of vitreous silica , 1999 .

[153]  Giuseppe Vallone,et al.  Polarization entangled states measurement on a chip , 2011, Optics + Optoelectronics.

[154]  Martin F. Schumann,et al.  Hybrid 2D–3D optical devices for integrated optics by direct laser writing , 2014, Light: Science & Applications.

[155]  Martin Wegener,et al.  Polymerization Kinetics in Three‐Dimensional Direct Laser Writing , 2014, Advanced materials.

[156]  Yves Bellouard,et al.  Spatio-temporally focused femtosecond laser pulses for nonreciprocal writing in optically transparent materials. , 2010, Optics express.

[157]  Nemanja Jovanovic,et al.  Integrated photonic building blocks for next-generation astronomical instrumentation II: the multimode to single mode transition. , 2013, Optics express.

[158]  Saulius Juodkazis,et al.  Femtosecond laser induced density changes in GeO_2 and SiO_2 glasses: fictive temperature effect [Invited] , 2011 .

[159]  R. Gadonas,et al.  Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization , 2010 .

[160]  Shoji Maruo,et al.  Single-anchor support and supercritical CO2 drying enable high-precision microfabrication of three-dimensional structures. , 2009, Optics express.

[161]  Saulius Juodkazis,et al.  Three‐Dimensional Spiral‐Architecture Photonic Crystals Obtained By Direct Laser Writing , 2005 .

[162]  Mangirdas Malinauskas,et al.  Effect of the photoinitiator presence and exposure conditions on laser-induced damage threshold of ORMOSIL (SZ2080) , 2015 .

[163]  A. Piskarskas,et al.  Ultrafast laser nanostructuring of photopolymers: a decade of advances , 2013 .

[164]  K. Lee,et al.  Two‐photon stereolithography for realizing ultraprecise three‐dimensional nano/microdevices , 2009 .

[165]  C. Charitidis,et al.  Pre-osteoblastic cell response on three-dimensional, organic-inorganic hybrid material scaffolds for bone tissue engineering. , 2013, Journal of biomedical materials research. Part A.

[166]  Hong Yang,et al.  Nonuniform shrinkage and stretching of polymerized nanostructures fabricated by two-photon photopolymerization , 2008, Nanotechnology.

[167]  Ute Drechsler,et al.  SU-8 for real three-dimensional subdiffraction-limit two-photon microfabrication , 2004 .

[168]  Giuseppe Vallone,et al.  Polarization entangled state measurement on a chip , 2010, CLEO: 2011 - Laser Science to Photonic Applications.

[169]  Lei Wang,et al.  High Curvature Concave–Convex Microlens , 2015, IEEE Photonics Technology Letters.

[170]  V. Sirutkaitis,et al.  Rapid microfabrication of transparent materials using filamented femtosecond laser pulses , 2014 .

[171]  Clayton M. Christensen The Innovator's Dilemma: When New Technologies Cause Great Firms to Fail , 2013 .

[172]  Tianyue Yu,et al.  An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication. , 2002, Science.

[173]  H. B. Cary,et al.  Modern Welding Technology , 1979 .

[174]  Yang Gao,et al.  Two-photon polymerization: investigation of chemical and mechanical properties of resins using Raman microspectroscopy. , 2014, Optics letters.

[175]  Saulius Juodkazis,et al.  Realization of structural color by direct laser write technique in photoresist , 2014 .

[176]  Andreas Tünnermann,et al.  Ultrashort Pulse Laser Welding - A New Approach for High- Stability Bonding of Different Glasses , 2012 .

[177]  R. Gattass,et al.  Achieving λ/20 Resolution by One-Color Initiation and Deactivation of Polymerization , 2009, Science.

[178]  M. Wegener,et al.  Direct laser writing and characterization of “Slanted Pore” Photonic Crystals , 2004 .

[179]  Min Gu,et al.  Experimental Evidence for Superprism Effects in Three‐Dimensional Polymer Photonic Crystals , 2006 .

[180]  Costas Fotakis,et al.  3D conducting nanostructures fabricated using direct laser writing , 2011 .

[181]  Thomas Pertsch,et al.  Energy deposition dynamics of femtosecond pulses in water , 2014, 1405.5378.

[182]  Yoshio Hayasaki,et al.  Holographic Vector Wave Femtosecond Laser Processing , 2014 .