Effective superpotential and partial breaking of N=2 supersymmetry

We consider the effective superpotential of N=2, U(N) gauge model where N=2 supersymmetry is spontaneously broken to N=1. By the computation of loop diagrams, we obtain a formula for the effective superpotential which is deformed from the well-known form of the effective superpotential of N=1, U(N) gauge model with a tree level superpotential.

[1]  H. Itoyama,et al.  N=2 quiver gauge model and partial supersymmetry breaking , 2007, 0709.3166.

[2]  H. Itoyama,et al.  Deformation of Dijkgraaf–Vafa relation via spontaneously broken N=2 supersymmetry II , 2007, 0710.4377.

[3]  F. Ferrari The chiral ring and the periods of the resolvent , 2007, hep-th/0701220.

[4]  H. Itoyama,et al.  Spontaneous Partial Breaking of N = 2 Supersymmetry and the U(N) Gauge Model , 2006, hep-th/0611284.

[5]  K. Fujiwara Partial breaking of N=2 supersymmetry and decoupling limit of Nambu–Goldstone fermion in U(N) gauge model , 2006, hep-th/0609039.

[6]  K. Maruyoshi Gauged N=2 Supergravity and Partial Breaking of Extended Supersymmetry , 2006, hep-th/0607047.

[7]  H. Itoyama,et al.  Partial supersymmetry breaking and N=2 U(Nc) gauge model with hypermultiplets in harmonic superspace , 2006 .

[8]  H. Itoyama,et al.  U(N) GAUGED ${\mathcal N} = 2$ SUPERGRAVITY AND PARTIAL BREAKING OF LOCAL ${\mathcal N} = 2$ SUPERSYMMETRY , 2006, hep-th/0603180.

[9]  F. Ferrari The Proof of the Dijkgraaf-Vafa Conjecture and application to the mass gap and confinement problems , 2006, hep-th/0602249.

[10]  H. Itoyama,et al.  Partial breaking of N=2 supersymmetry and of gauge symmetry in the U(N) gauge model , 2005, hep-th/0503113.

[11]  John Ellis,et al.  Int. J. Mod. Phys. , 2005 .

[12]  H. Itoyama,et al.  U(N) Gauge Model and Partial Breaking of N=2 Supersymmetry , 2004, hep-th/0602267.

[13]  R. Heise,et al.  An introduction to supersymmetric gauge theories and matrix models , 2003, hep-th/0311066.

[14]  E. Witten,et al.  Chiral Rings and Phases of Supersymmetric Gauge Theories , 2003, hep-th/0303207.

[15]  M. Grisaru,et al.  Perturbative computation of glueball superpotentials , 2002, hep-th/0211017.

[16]  E. Witten,et al.  Phases of = 1 supersymmetric gauge theories , 2003, hep-th/0301006.

[17]  N. Seiberg Chiral Rings and Anomalies in Supersymmetric Gauge Theory , 2002, hep-th/0211170.

[18]  C. Vafa,et al.  A Perturbative Window into Non-Perturbative Physics , 2002, hep-th/0208048.

[19]  C. Vafa,et al.  On geometry and matrix models , 2002, hep-th/0207106.

[20]  C. Vafa,et al.  Matrix models, topological strings, and supersymmetric gauge theories , 2002, hep-th/0206255.

[21]  J. Louis Aspects of Spontaneous N=2 -> N=1 Breaking in Supergravity , 2002, hep-th/0203138.

[22]  C. Vafa,et al.  A large N duality via a geometric transition , 2001, hep-th/0103067.

[23]  C. Vafa Superstrings and topological strings at large N , 2000, hep-th/0008142.

[24]  L. Girardello,et al.  SPONTANEOUS N = 2 N = 1 LOCAL SUPERSYMMETRY BREAKING WITH SURVIVING COMPACT GAUGE GROUPS , 1996, hep-th/9607032.

[25]  I. Antoniadis,et al.  Spontaneous breaking of N = 2 global supersymmetry , 1995, hep-th/9512006.

[26]  L. Girardello,et al.  Minimal Higgs branch for the breaking of half of the supersymmetries in N = 2 supergravity , 1995, hep-th/9510074.