Spin polarization of the low-density three-dimensional electron gas.

To determine the state of spin polarization of the three-dimensional electron gas at very low densities and zero temperature, we calculate the energy versus spin polarization using diffusion quantum Monte Carlo methods with backflow wave functions and twist averaged boundary conditions. We find a second-order phase transition to a partially polarized phase at r(s) approximately 50+/-2. The magnetic transition temperature is estimated using an effective mean-field method, the Stoner model.

[1]  S. Murakami,et al.  Theory of ferromagnetism in Ca(1-x)La(x)B(6). , 2001, Physical review letters.

[2]  D. Ceperley,et al.  Twist-averaged boundary conditions in continuum quantum Monte Carlo algorithms. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  D. Ceperley,et al.  Exchange frequencies in the 2D Wigner crystal. , 2000, Physical review letters.

[4]  R. Needs,et al.  Quantum Monte Carlo simulations of solids , 2001 .

[5]  Pickett,et al.  Electronic fine structure in the electron-hole plasma in SrB6 , 2000, Physical review letters.

[6]  Ichimaru Comment on "Zero temperature phases of the electron gas" , 2000, Physical review letters.

[7]  Varma,et al.  Ferromagnetism in doped excitonic insulators , 2000, Physical review letters.

[8]  V. Anisimov,et al.  Magnetic properties: Ferromagnetism in the hexaborides , 1999, Nature.

[9]  D. Ceperley Condensed-matter physics: Return of the itinerant electron , 1999, Nature.

[10]  Los Alamos National Laboratory,et al.  Zero Temperature Phases of the Electron Gas , 1998, cond-mat/9810126.

[11]  R. Martin,et al.  Effects of backflow correlation in the three-dimensional electron gas: Quantum Monte Carlo study , 1998, cond-mat/9803092.

[12]  Jones,et al.  Crystallization of the one-component plasma at finite temperature. , 1996, Physical review letters.

[13]  David M. Ceperley,et al.  An optimized method for treating long-range potentials , 1995 .

[14]  D. Ceperley,et al.  New stochastic method for systems with broken time-reversal symmetry: 2D fermions in a magnetic field. , 1993, Physical review letters.

[15]  Congleton Hyperfine populations prior to muon capture. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[16]  Tanaka,et al.  Spin-dependent correlations and thermodynamic functions for electron liquids at arbitrary degeneracy and spin polarization. , 1989, Physical review. B, Condensed matter.

[17]  B. Alder,et al.  THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHOD , 2010 .

[18]  D. Ceperley Ground state of the fermion one-component plasma: A Monte Carlo study in two and three dimensions , 1978 .

[19]  T. Gaskell The Collective Treatment of a Fermi Gas: II , 1961 .

[20]  E. C. Stoner Collective Electron Ferromagnetism. II. Energy and Specific Heat , 1939 .

[21]  E. C. Stoner,et al.  Collective Electron Ferromagnetism , 1938 .

[22]  E. Wigner On the Interaction of Electrons in Metals , 1934 .

[23]  F. Bloch,et al.  Bemerkung zur Elektronentheorie des Ferromagnetismus und der elektrischen Leitfähigkeit , 1929 .