Molecular Polarization Effects on the Relative Energies of the Real and Putative Crystal Structures of Valine.

The computer-generation of the crystal structures of the α-amino acid valine is used as a challenging test of lattice energy modeling methods for crystal structure prediction of flexible polar organic molecules and, specifically, to examine the importance of molecular polarization on calculated relative energies. Total calculated crystal energies, which combine atom-atom model potential calculations of intermolecular interactions with density functional theory intramolecular energies, do not effectively distinguish the real (known) crystal structures from the rest of the low energy computer-generated alternatives when the molecular electrostatic models are derived from isolated molecule calculations. However, we find that introducing a simple model for the bulk crystalline environment when calculating the molecular energy and electron density distribution leads to important changes in relative total crystal energies and correctly distinguishes the observed crystal structures from the set of computer-generated possibilities. This study highlights the importance of polarization of the molecular charge distribution in crystal structure prediction calculations, especially for polar flexible molecules, and suggests a computationally inexpensive approach to include its effect in lattice energy calculations.

[1]  F. Allen The Cambridge Structural Database: a quarter of a million crystal structures and rising. , 2002, Acta crystallographica. Section B, Structural science.

[2]  M. Mallikarjunan,et al.  Crystal structure of dl‐valine , 1969 .

[3]  Donald E. Williams,et al.  Nonbonded Potential Function Models for Crystalline Oxohydrocarbons , 1981 .

[4]  S. Chemburkar,et al.  Dealing with the Impact of Ritonavir Polymorphs on the Late Stages of Bulk Drug Process Development , 2000 .

[5]  G. Day,et al.  A strategy for predicting the crystal structures of flexible molecules: the polymorphism of phenobarbital. , 2007, Physical chemistry chemical physics : PCCP.

[6]  Giovanni Scalmani,et al.  New developments in the polarizable continuum model for quantum mechanical and classical calculations on molecules in solution , 2002 .

[7]  A. Stone The induction energy of an assembly of polarizable molecules , 1989 .

[8]  H. Sun,et al.  COMPASS: An ab Initio Force-Field Optimized for Condensed-Phase ApplicationsOverview with Details on Alkane and Benzene Compounds , 1998 .

[9]  D. Osguthorpe,et al.  Structure and energetics of ligand binding to proteins: Escherichia coli dihydrofolate reductase‐trimethoprim, a drug‐receptor system , 1988, Proteins.

[10]  Structures and conformational energies of amino acids in the zwitterionic, hydrogen-bonded state , 2006 .

[11]  William Jones,et al.  Beyond the isotropic atom model in crystal structure prediction of rigid molecules: atomic multipoles versus point charges , 2005 .

[12]  S. L. Mayo,et al.  DREIDING: A generic force field for molecular simulations , 1990 .

[13]  T. C. Lewis,et al.  A third blind test of crystal structure prediction. , 2005, Acta crystallographica. Section B, Structural science.

[14]  Jacopo Tomasi,et al.  Continuum solvation models: A new approach to the problem of solute’s charge distribution and cavity boundaries , 1997 .

[15]  Sarah L. Price,et al.  Role of electrostatic interactions in determining the crystal structures of polar organic molecules. A distributed multipole study , 1996 .

[16]  L. Misoguti,et al.  Optical properties of L-threonine crystals , 2003 .

[17]  Anthony J Stone,et al.  Accurate Induction Energies for Small Organic Molecules:  1. Theory. , 2008, Journal of chemical theory and computation.

[18]  W. Goddard,et al.  UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations , 1992 .

[19]  B. Dalhus,et al.  Triclinic Form of dl-Valine , 1996 .

[20]  Constantinos C. Pantelides,et al.  Ab initio crystal structure prediction—I. Rigid molecules , 2005, J. Comput. Chem..

[21]  Michael J Cima,et al.  High-throughput crystallization: polymorphs, salts, co-crystals and solvates of pharmaceutical solids. , 2004, Advanced drug delivery reviews.

[22]  S. Clark,et al.  Lattice dynamical and dielectric properties of L-amino acids , 2006 .

[23]  J. Gasteiger,et al.  ITERATIVE PARTIAL EQUALIZATION OF ORBITAL ELECTRONEGATIVITY – A RAPID ACCESS TO ATOMIC CHARGES , 1980 .

[24]  Birger Dittrich,et al.  Dipole moment enhancement in molecular crystals from X-ray diffraction data. , 2007, Chemphyschem : a European journal of chemical physics and physical chemistry.

[25]  William Jones,et al.  Database guided conformation selection in crystal structure prediction of alanine , 2007 .

[26]  James A. Chisholm,et al.  COMPACK: a program for identifying crystal structure similarity using distances , 2005 .

[27]  B. Delley An all‐electron numerical method for solving the local density functional for polyatomic molecules , 1990 .

[28]  M. Alderton,et al.  Distributed multipole analysis , 2006 .

[29]  J. Tomasi,et al.  Ab initio study of ionic solutions by a polarizable continuum dielectric model , 1998 .

[30]  J. Applequist,et al.  A multipole interaction theory of electric polarization of atomic and molecular assemblies , 1985 .

[31]  B. Dalhus,et al.  Crystal Structures of Hydrophobic Amino Acids. I. Redeterminations of L-Methionine and L-Valine at 120 K , 1996 .

[32]  D. E. Williams,et al.  Nonbonded potentials for azahydrocarbons: the importance of the Coulombic interaction , 1984 .

[33]  William Jones,et al.  An Assessment of Lattice Energy Minimization for the Prediction of Molecular Organic Crystal Structures , 2004 .

[34]  Sarah L Price,et al.  Accurate Induction Energies for Small Organic Molecules. 2. Development and Testing of Distributed Polarizability Models against SAPT(DFT) Energies. , 2008, Journal of chemical theory and computation.

[35]  P. Karamertzanis,et al.  Is the Induction Energy Important for Modeling Organic Crystals? , 2008, Journal of chemical theory and computation.

[36]  Anthony J. Stone,et al.  Distributed multipole analysis, or how to describe a molecular charge distribution , 1981 .

[37]  V. Bagnato,et al.  Optical properties of L-alanine Organic Crystals , 1996 .

[38]  Charles L. Brooks,et al.  CHARMM fluctuating charge force field for proteins: I parameterization and application to bulk organic liquid simulations , 2004, J. Comput. Chem..

[39]  Ruhong Zhou,et al.  Parametrizing a polarizable force field from ab initio data. I. The fluctuating point charge model , 1999 .