Automatic knot detection and measurements from X-ray CT images of wood: A review and validation of an improved algorithm on softwood samples

[1]  Dongping Zhu,et al.  CT image sequence processing for wood defect recognition , 1991, [1991 Proceedings] The Twenty-Third Southeastern Symposium on System Theory.

[2]  Fleur Longuetaud,et al.  Automatic detection of the heartwood/sapwood boundary within Norway spruce (Picea abies (L.) Karst.) logs by means of CT images , 2007 .

[3]  F. Berninger,et al.  Modeling jack pine branch characteristics in Eastern Canada , 2011 .

[4]  Y. Caraglio,et al.  CERNES MANQUANTS ET HOUPPIER VIVANT CHEZ LE PIN LARICIO (PINUS NIGRA ARN. SSP. LARICIO (POIR.) MAIRE) , 1998 .

[5]  Jean-Michel Leban,et al.  Tracking rameal traces in sessile oak trunks with X-ray computer tomography: biological bases, preliminary results and perspectives , 2010, Trees.

[6]  S. Hein Knot attributes and occlusion of naturally pruned branches of Fagus sylvatica , 2008 .

[7]  Daniel L. Schmoldt,et al.  CT image sequence analysis for object recognition-a rule based 3-D computer vision system , 1991, Conference Proceedings 1991 IEEE International Conference on Systems, Man, and Cybernetics.

[8]  Alfred Rinnhofer,et al.  Modeling Knot Geometry in Norway Spruce from Industrial CT Images , 2003, SCIA.

[9]  H. Peltola,et al.  Linking tree stem properties of Scots pine (Pinus sylvestris L.) to sawn timber properties through simulated sawing , 2003 .

[10]  Paula Soares,et al.  Modelling Forest Systems , 2003 .

[11]  J. Kershaw,et al.  Approaches for Modeling Vertical Distribution of Maximum Knot Size in Black Spruce: A Comparison of Fixed- and Mixed-Effects Nonlinear Models , 2009 .

[12]  A. Lynn Abbott,et al.  A New Approach to Automated Labeling of Internal Features of Hardwood Logs Using CT Images , 1996 .

[13]  Beatrice Gralton,et al.  Washington DC - USA , 2008 .

[14]  Suchendra M. Bhandarkar,et al.  Automated Planning and Optimization of Lumber Production Using Machine Vision and Computed Tomography , 2008, IEEE Transactions on Automation Science and Engineering.

[15]  L. Moberg Variation in Knot Size of Pinus sylvestris in Two Initial Spacing Trials , 1999 .

[16]  Roger E. Hernández,et al.  Identification of internal defect of sugar maple logs from CT images using supervised classification methods , 2006, Holz als Roh- und Werkstoff.

[17]  Y. Chui,et al.  Identification of selected log characteristics from computed tomography images of sugar maple logs using maximum likelihood classifier and textural analysis , 2008 .

[18]  Y. Guédon,et al.  Predicting the vertical location of branches along Atlas cedar stem (Cedrus atlantica Manetti) in relation to annual shoot length , 2007, Annals of Forest Science.

[19]  F. Houllier,et al.  Branchiness of Norway spruce in northeastern France: predicting the main crown characteristics from usual tree measurements , 1992 .

[20]  A. A. Beex,et al.  Robust Spatial Autoregressive Modeling for Hardwood Log Inspection , 1994, J. Vis. Commun. Image Represent..

[21]  F. Houllier,et al.  Branchiness of Norway spruce in north-eastern France: modelling vertical trends in maximum nodal branch size , 1991 .

[22]  A. Achim,et al.  Modelling knot morphology as a function of external tree and branch attributes , 2013 .

[23]  H. Peltola,et al.  Sawn timber properties of Scots pine as affected by initial stand density, thinning and pruning: a simulation based approach. , 2009 .

[24]  M. Samson,et al.  Représentation mathématique des noeuds dans le tronc des arbres , 1996 .

[25]  Urban Nordmark,et al.  Models of Knots and Log Geometry of Young Pinus sylvestris Sawlogs Extracted from Computed Tomographic Images , 2003 .

[26]  T. Seifert,et al.  Analysing the long-term effects of artificial pruning of wild cherry by computer tomography , 2010, Trees.

[27]  Conrad Sanderson,et al.  Armadillo: An Open Source C++ Linear Algebra Library for Fast Prototyping and Computationally Intensive Experiments , 2010 .

[28]  F. Longuetaud Detection et analyse non destructives de caractéristiques internes de billons d'Epicéa commun (Picea abies (L. ) Karst. ) par tomographie à rayons X , 2005 .

[29]  Alfred Rinnhofer,et al.  Modeling of Internal Defects in Logs for value Optimization based on Industrial CT Scanning , 2003 .

[30]  D. Barthélémy,et al.  Trunk and main-branch development in Nothofagus pumilio (Nothofagaceae): a retrospective analysis of tree growth , 2002 .

[31]  Richard W. Conners,et al.  A Computer Vision System forLocating and Identifying Internal Log Defects Using CT Imagery , 1991 .

[32]  A. Usenius,et al.  Shape and distribution of knots in a sample of picea abies logs , 1997 .

[33]  Alain F. Zuur,et al.  A protocol for data exploration to avoid common statistical problems , 2010 .

[34]  Suchendra M. Bhandarkar,et al.  Machine Vision and Applications c ○ Springer-Verlag 1999 CATALOG: a system for detection and rendering of internal log defects using computer tomography , 1997 .

[35]  Daniel L. Schmoldt,et al.  Nondestructive methods for detecting defects in softwood logs , 1996 .

[36]  Cristhian Aguilera,et al.  INTERNAL WOOD INSPECTION WITH ACTIVE CONTOUR USING DATA FROM CTSCANNING , 2008 .

[37]  R. W. Conners,et al.  3-D signal processing in a computer vision system (hardwood logs inspection) , 1991, IEEE 1991 International Conference on Systems Engineering.

[38]  Yann Guédon,et al.  Synchronization of growth, branching and flowering processes in the South American tropical tree Cecropia obtusa (Cecropiaceae). , 2002, American journal of botany.

[39]  H. Mäkinen,et al.  Predicting branch angle and branch diameter of Scots pine from usual tree measurements and stand structural information , 1998 .

[40]  Céline Meredieu,et al.  Modelling branchiness of Corsican pine with mixed-effect models (Pinus nigra Arnold ssp. laricio (Poiret) Maire) , 1998 .

[41]  Alexis Achim,et al.  Predicting the branching properties of Sitka Spruce grown in Great Britain. , 2006 .

[42]  M. Samson Modelling of knots in logs , 2004, Wood Science and Technology.

[43]  S. Grundberg,et al.  Classification of scots pine (Pinus sylvestris) knots in density images from CT scanned logs , 2007, Holz als Roh- und Werkstoff.

[44]  Hugo Lemieux,et al.  Characterization and modeling of knots in black spruce (picea mariana) logs , 2007 .

[45]  Jean-Michel Leban,et al.  Linking growth modelling to timber quality assessment for Norway spruce , 1995 .

[46]  J. Oja,et al.  Evaluation of knot parameters measured automatically in CT-images of Norway spruce (Picea abies (L.) Karst.) , 2000, Holz als Roh- und Werkstoff.

[47]  Anders Grönlund,et al.  Log scanning : extraction of knot geometry in CT-volumes , 1992 .

[48]  R. Joyce,et al.  1 Mesoamerica : A Working Model for Archaeology , 2003 .

[49]  Urban Nordmark,et al.  Value recovery and production control in the forestry-wood chain using simulation technique , 2005 .

[50]  F. Colin,et al.  Modélisation du profil vertical des diamètres, angles et nombres de branches pour trois provenances d'Epicea commun , 1993 .

[51]  Patricia Stille Lederman,et al.  Columbia, South Carolina , 2002 .

[52]  Charles W. McMillin,et al.  Locating knots by industrial tomography- A feasibility study , 1984 .

[53]  Suchendra M. Bhandarkar,et al.  A novel feature-based tracking approach to the detection, localization, and 3-D reconstruction of internal defects in hardwood logs using computer tomography , 2006, Pattern Analysis and Applications.

[54]  J. P. Skovsgaard Branch thickness in unthinned stands of Sitka spruce (Picea sitchensis (Bong.) Carr.) , 1988 .

[55]  Brian V. Funt,et al.  Detection of internal log defects by automatic interpretation of computer tomography images , 1987 .

[56]  Y. Chui,et al.  Identification of Log Characteristics in Computed Tomography Images Using Back-Propagation Neural Networks with the Resilient Back-Propagation Training Algorithm and Textural Analysis: Preliminary Results , 2008 .

[57]  Markku Pietikäinen Detection of knots in logs using x-ray imaging , 1996 .

[58]  R. DeLellis Morphology Methods , 2001, Humana Press.

[59]  Urban Nordmark,et al.  Knot Identification from CT Images of Young Pinus sylvestris Sawlogs Using Artificial Neural Networks , 2002 .

[60]  Aguilera C. Cristhian,et al.  DETECTION OF KNOTS USING XR AY TOMOGR APHIES AND DEFORMABLE CONTOURS WITH SIMULATED ANNEALING , 2008 .

[61]  Fleur Longuetaud,et al.  Measuring wood density by means of X-ray computer tomography , 2009, Annals of Forest Science.

[62]  Franka Brüchert,et al.  Knots in CT scans of Scots pine logs , 2010 .

[63]  J. Kershaw,et al.  Modelling primary branch frequency and size for five conifer species in Maine, USA. , 2010 .

[64]  Jun-ichiro Toriwaki,et al.  New algorithms for euclidean distance transformation of an n-dimensional digitized picture with applications , 1994, Pattern Recognit..

[65]  Jing He A Comparison of Artificial Neural Network Classifiers for Analysis of CT Images for the Inspection of Hardwood Logs , 1997 .

[66]  Olle Hagman,et al.  Proceedings from the 2nd International Seminar/Workshop on Scanning Technology and Image Processing on Wood : Skellefteå, Sweden, August 14-16, 1995 , 1995 .

[67]  Marie-Odile Berger,et al.  Automatic detection of pith on CT images of spruce logs , 2004 .

[68]  Suchendra M. Bhandarkar,et al.  A system for detection of internal log defects by computer analysis of axial CT images , 1996, Proceedings Third IEEE Workshop on Applications of Computer Vision. WACV'96.

[69]  Hans Petersson,et al.  Predicting knot diameter of Pinus sylvestris in Sweden , 1999 .

[70]  A. Lynn Abbott,et al.  Comparison of several artificial neural network classifiers for CT images of hardwood logs , 1998, Electronic Imaging.

[71]  Daniel L. Schmoldt,et al.  Automated analysis of CT images for the inspection of hardwood logs , 1996, Proceedings of International Conference on Neural Networks (ICNN'96).

[72]  Daniel L. Schmoldt,et al.  A prototype vision system for analyzing CT imagery of hardwood logs , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[73]  L. Björklund The interior knot structure of Pinus sylvestris stems , 1997 .

[74]  Erol Sarigul,et al.  Rule-driven defect detection in CT images of hardwood logs , 2003 .

[75]  R. Hernández,et al.  Effect of moisture content variation on CT image classification to identify internal defects of sugar maple logs , 2007 .

[76]  Susan Tiefenbrun,et al.  SAN JOSE (California) , 2012 .

[77]  Brigitte Leblon,et al.  Identification of selected internal wood characteristics in computed tomography images of black spruce: a comparison study , 2009, Journal of Wood Science.

[78]  Guillaume Cornu,et al.  CAPSIS: Computer-aided projection for strategies in silviculture : Advantages of a shared forest-modelling platform , 2002 .