State Inference in Variational Bayesian Nonlinear State-Space Models
暂无分享,去创建一个
Juha Karhunen | Antti Honkela | Tapani Raiko | Matti Tornio | J. Karhunen | T. Raiko | M. Tornio | A. Honkela | Matti Tornio
[1] C. M. Reeves,et al. Function minimization by conjugate gradients , 1964, Comput. J..
[2] B. Anderson,et al. Optimal Filtering , 1979, IEEE Transactions on Systems, Man, and Cybernetics.
[3] Jeffrey K. Uhlmann,et al. New extension of the Kalman filter to nonlinear systems , 1997, Defense, Security, and Sensing.
[4] 최승진. Nonlinear dynamic independent component analysis using state-space and neural network models , 1999 .
[5] Richard M. Everson,et al. Particle Filters for Non-Stationary ICA , 2000 .
[6] M. Girolami,et al. Advances in Independent Component Analysis , 2000, Perspectives in Neural Computing.
[7] Neil J. Gordon,et al. Editors: Sequential Monte Carlo Methods in Practice , 2001 .
[8] S. Haykin. Kalman Filtering and Neural Networks , 2001 .
[9] Erkki Oja,et al. Adaptive Algorithm for Blind Separation from Noisy Time-Varying Mixtures , 2001, Neural Computation.
[10] Juha Karhunen,et al. An Unsupervised Ensemble Learning Method for Nonlinear Dynamic State-Space Models , 2002, Neural Computation.
[11] Rudolph van der Merwe,et al. The Unscented Kalman Filter , 2002 .
[12] Timothy J. Robinson,et al. Sequential Monte Carlo Methods in Practice , 2003 .
[13] Antti Honkela,et al. Unsupervised Variational Bayesian Learning of Nonlinear Models , 2004, NIPS.
[14] M. Psiaki. Backward-Smoothing Extended Kalman Filter , 2005 .
[15] T. Raiko,et al. Learning nonlinear state-space models for control , 2005, Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005..