Tensor Networks and Hierarchical Tensors for the Solution of High-Dimensional Partial Differential Equations

Hierarchical tensors can be regarded as a generalisation, preserving many crucial features, of the singular value decomposition to higher-order tensors. For a given tensor product space, a recursive decomposition of the set of coordinates into a dimension tree gives a hierarchy of nested subspaces and corresponding nested bases. The dimensions of these subspaces yield a notion of multilinear rank. This rank tuple, as well as quasi-optimal low-rank approximations by rank truncation, can be obtained by a hierarchical singular value decomposition. For fixed multilinear ranks, the storage and operation complexity of these hierarchical representations scale only linearly in the order of the tensor. As in the matrix case, the set of hierarchical tensors of a given multilinear rank is not a convex set, but forms an open smooth manifold. A number of techniques for the computation of hierarchical low-rank approximations have been developed, including local optimisation techniques on Riemannian manifolds as well as truncated iteration methods, which can be applied for solving high-dimensional partial differential equations. This article gives a survey of these developments. We also discuss applications to problems in uncertainty quantification, to the solution of the electronic Schrödinger equation in the strongly correlated regime, and to the computation of metastable states in molecular dynamics.

[1]  Trygve Helgaker,et al.  Molecular Electronic-Structure Theory: Helgaker/Molecular Electronic-Structure Theory , 2000 .

[2]  Antonio Falcó,et al.  On Minimal Subspaces in Tensor Representations , 2012, Found. Comput. Math..

[3]  André Uschmajew,et al.  Local Convergence of the Alternating Least Squares Algorithm for Canonical Tensor Approximation , 2012, SIAM J. Matrix Anal. Appl..

[4]  Wolfgang Hackbusch,et al.  An Introduction to Hierarchical (H-) Rank and TT-Rank of Tensors with Examples , 2011, Comput. Methods Appl. Math..

[5]  Boris N. Khoromskij,et al.  Superfast Wavelet Transform Using Quantics-TT Approximation. I. Application to Haar Wavelets , 2014, Comput. Methods Appl. Math..

[6]  Sandeep Sharma,et al.  The density matrix renormalization group in quantum chemistry. , 2011, Annual review of physical chemistry.

[7]  R. DeVore,et al.  Nonlinear approximation , 1998, Acta Numerica.

[8]  Robert E. Mahony,et al.  Optimization Algorithms on Matrix Manifolds , 2007 .

[9]  Alan Edelman,et al.  The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[10]  Lars Grasedyck,et al.  Tree Adaptive Approximation in the Hierarchical Tensor Format , 2014, SIAM J. Sci. Comput..

[11]  B. Khoromskij,et al.  Tensor-structured Galerkin approximation of parametric and stochastic elliptic PDEs , 2010 .

[12]  Reinhold Schneider,et al.  Adaptive stochastic Galerkin FEM with hierarchical tensor representations , 2015, Numerische Mathematik.

[13]  R. DeVore,et al.  Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDEs , 2010 .

[14]  Claude Jeffrey Gittelson,et al.  Adaptive stochastic Galerkin FEM , 2013 .

[15]  G. W. Stewart,et al.  On the Early History of the Singular Value Decomposition , 1993, SIAM Rev..

[16]  W. Hackbusch Tensor Spaces and Numerical Tensor Calculus , 2012, Springer Series in Computational Mathematics.

[17]  Wolfgang Dahmen,et al.  Adaptive Near-Optimal Rank Tensor Approximation for High-Dimensional Operator Equations , 2013, Foundations of Computational Mathematics.

[18]  Othmar Koch,et al.  Dynamical Tensor Approximation , 2010, SIAM J. Matrix Anal. Appl..

[19]  Nadav Cohen,et al.  On the Expressive Power of Deep Learning: A Tensor Analysis , 2015, COLT 2016.

[20]  E. Tyrtyshnikov,et al.  TT-cross approximation for multidimensional arrays , 2010 .

[21]  Ivan Oseledets,et al.  Recursive decomposition of multidimensional tensors , 2009 .

[22]  Yang Qi,et al.  On the geometry of tensor network states , 2011, Quantum Inf. Comput..

[23]  Reinhold Schneider,et al.  Dynamical Approximation by Hierarchical Tucker and Tensor-Train Tensors , 2013, SIAM J. Matrix Anal. Appl..

[24]  J. Ballani,et al.  Black box approximation of tensors in hierarchical Tucker format , 2013 .

[25]  Patrick L. Combettes,et al.  Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..

[26]  Wolfgang Dahmen,et al.  Tensor-Sparsity of Solutions to High-Dimensional Elliptic Partial Differential Equations , 2014, Found. Comput. Math..

[27]  Vladimir A. Kazeev,et al.  Quantized tensor-structured finite elements for second-order elliptic PDEs in two dimensions , 2018, Numerische Mathematik.

[28]  Lek-Heng Lim Tensors and Hypermatrices , 2013 .

[29]  F. Verstraete,et al.  Tensor product methods and entanglement optimization for ab initio quantum chemistry , 2014, 1412.5829.

[30]  P. Comon,et al.  Tensor decompositions, alternating least squares and other tales , 2009 .

[31]  S. Dahlke Extraction of quantifiable information from complex systems , 2014 .

[32]  André Uschmajew Zur Theorie der Niedrigrangapproximation in Tensorprodukten von Hilberträumen , 2013 .

[33]  Claude Jeffrey Gittelson,et al.  Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs* , 2011, Acta Numerica.

[34]  Christopher J. Hillar,et al.  Most Tensor Problems Are NP-Hard , 2009, JACM.

[35]  A. Uschmajew,et al.  On low-rank approximability of solutions to high-dimensional operator equations and eigenvalue problems , 2014, 1406.7026.

[36]  Volker Bach,et al.  Many-Electron Approaches in Physics, Chemistry and Mathematics , 2014 .

[37]  Martin J. Mohlenkamp Musings on multilinear fitting , 2013 .

[38]  C. Lubich From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis , 2008 .

[39]  Daniel Kressner,et al.  Low-Rank Tensor Methods with Subspace Correction for Symmetric Eigenvalue Problems , 2014, SIAM J. Sci. Comput..

[40]  Wolfgang Dahmen,et al.  Adaptive Low-Rank Methods: Problems on Sobolev Spaces , 2014, SIAM J. Numer. Anal..

[41]  C. Eckart,et al.  The approximation of one matrix by another of lower rank , 1936 .

[42]  Daniel Kressner,et al.  Preconditioned Low-Rank Methods for High-Dimensional Elliptic PDE Eigenvalue Problems , 2011, Comput. Methods Appl. Math..

[43]  Bart Vandereycken,et al.  Low-rank tensor completion by Riemannian optimization , 2014 .

[44]  Vin de Silva,et al.  Tensor rank and the ill-posedness of the best low-rank approximation problem , 2006, math/0607647.

[45]  Wolfgang Hackbusch,et al.  Numerical tensor calculus* , 2014, Acta Numerica.

[46]  Vladas Sidoravicius,et al.  Stochastic Processes and Applications , 2007 .

[47]  Richard A. Harshman,et al.  Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .

[48]  S. V. Dolgov,et al.  ALTERNATING MINIMAL ENERGY METHODS FOR LINEAR SYSTEMS IN HIGHER DIMENSIONS∗ , 2014 .

[49]  Wolfgang Hackbusch $$L^{\infty }$$ estimation of tensor truncations , 2013, Numerische Mathematik.

[50]  S. Lang Fundamentals of differential geometry , 1998 .

[51]  Bart Vandereycken,et al.  The geometry of algorithms using hierarchical tensors , 2013, Linear Algebra and its Applications.

[52]  S. White Density matrix renormalization group algorithms with a single center site , 2005, cond-mat/0508709.

[53]  R. Tempone,et al.  ON THE OPTIMAL POLYNOMIAL APPROXIMATION OF STOCHASTIC PDES BY GALERKIN AND COLLOCATION METHODS , 2012 .

[54]  G. Pavliotis Stochastic Processes and Applications: Diffusion Processes, the Fokker-Planck and Langevin Equations , 2014 .

[55]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[56]  G. Vidal Efficient classical simulation of slightly entangled quantum computations. , 2003, Physical review letters.

[57]  Boris N. Khoromskij,et al.  Computation of extreme eigenvalues in higher dimensions using block tensor train format , 2013, Comput. Phys. Commun..

[58]  Pierre Ladevèze,et al.  Separated Representations and PGD-Based Model Reduction , 2014 .

[59]  Markus Bachmayr,et al.  Iterative Methods Based on Soft Thresholding of Hierarchical Tensors , 2017, Found. Comput. Math..

[60]  Reinhold Schneider,et al.  Approximation rates for the hierarchical tensor format in periodic Sobolev spaces , 2014, J. Complex..

[61]  Boris N. Khoromskij,et al.  Approximate iterations for structured matrices , 2008, Numerische Mathematik.

[62]  Eugene E. Tyrtyshnikov,et al.  Algebraic Wavelet Transform via Quantics Tensor Train Decomposition , 2011, SIAM J. Sci. Comput..

[63]  S. V. DOLGOV,et al.  Fast Solution of Parabolic Problems in the Tensor Train/Quantized Tensor Train Format with Initial Application to the Fokker-Planck Equation , 2012, SIAM J. Sci. Comput..

[64]  P. Comon,et al.  Higher-order power method - application in independent component analysis , 1995 .

[65]  Paul W. Ayers,et al.  The density matrix renormalization group for ab initio quantum chemistry , 2013, The European Physical Journal D.

[66]  Bart Vandereycken,et al.  Low-Rank Matrix Completion by Riemannian Optimization , 2013, SIAM J. Optim..

[67]  RWTH Aachen,et al.  Adaptive Low-Rank Methods for Problems on Sobolev Spaces with Error Control in $L_2$ , 2014, 1412.3951.

[68]  B. Khoromskij,et al.  Tensor-product approach to global time-space-parametric discretization of chemical master equation , 2012 .

[69]  F. Verstraete,et al.  Post-matrix product state methods: To tangent space and beyond , 2013, 1305.1894.

[70]  Vladimir N. Temlyakov,et al.  Nonlinear tensor product approximation of functions , 2014, J. Complex..

[71]  Andrzej Cichocki,et al.  Era of Big Data Processing: A New Approach via Tensor Networks and Tensor Decompositions , 2014, ArXiv.

[72]  Bernd Eggers,et al.  Nonlinear Functional Analysis And Its Applications , 2016 .

[73]  U. Schollwoeck The density-matrix renormalization group in the age of matrix product states , 2010, 1008.3477.

[74]  B. Khoromskij O(dlog N)-Quantics Approximation of N-d Tensors in High-Dimensional Numerical Modeling , 2011 .

[75]  R. Ghanem,et al.  Polynomial Chaos in Stochastic Finite Elements , 1990 .

[76]  Reinhold Schneider,et al.  Optimization problems in contracted tensor networks , 2011, Comput. Vis. Sci..

[77]  C. Lubich,et al.  A projector-splitting integrator for dynamical low-rank approximation , 2013, BIT Numerical Mathematics.

[78]  Reinhold Schneider,et al.  Tensor Spaces and Hierarchical Tensor Representations , 2014 .

[79]  慧 廣瀬 A Mathematical Introduction to Compressive Sensing , 2015 .

[80]  E. Schmidt Zur Theorie der linearen und nichtlinearen Integralgleichungen , 1907 .

[81]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[82]  Christine Tobler,et al.  Low-rank tensor methods for linear systems and eigenvalue problems , 2012 .

[83]  Uwe Helmke,et al.  Critical points of matrix least squares distance functions , 1995 .

[84]  Albert Cohen,et al.  Kolmogorov widths and low-rank approximations of parametric elliptic PDEs , 2015, Math. Comput..

[85]  F. L. Hitchcock Multiple Invariants and Generalized Rank of a P‐Way Matrix or Tensor , 1928 .

[86]  D. Xiu Numerical Methods for Stochastic Computations: A Spectral Method Approach , 2010 .

[87]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[88]  A. Uschmajew,et al.  A new convergence proof for the higher-order power method and generalizations , 2014, 1407.4586.

[89]  F. L. Hitchcock The Expression of a Tensor or a Polyadic as a Sum of Products , 1927 .

[90]  Albert Cohen,et al.  Convergence Rates of Best N-term Galerkin Approximations for a Class of Elliptic sPDEs , 2010, Found. Comput. Math..

[91]  B. Khoromskij,et al.  DMRG+QTT approach to computation of the ground state for the molecular Schrödinger operator , 2010 .

[92]  Jared Tanner,et al.  Normalized Iterative Hard Thresholding for Matrix Completion , 2013, SIAM J. Sci. Comput..

[93]  André Uschmajew,et al.  Well-posedness of convex maximization problems on Stiefel manifolds and orthogonal tensor product approximations , 2010, Numerische Mathematik.

[94]  Reinhold Schneider,et al.  The Alternating Linear Scheme for Tensor Optimization in the Tensor Train Format , 2012, SIAM J. Sci. Comput..

[95]  Mateusz Michalek,et al.  The Hackbusch conjecture on tensor formats , 2015 .

[96]  Antje Winkel,et al.  Modern Quantum Chemistry , 2016 .

[97]  Wotao Yin,et al.  A Block Coordinate Descent Method for Regularized Multiconvex Optimization with Applications to Nonnegative Tensor Factorization and Completion , 2013, SIAM J. Imaging Sci..

[98]  Virginie Ehrlacher,et al.  Convergence of a greedy algorithm for high-dimensional convex nonlinear problems , 2010, 1004.0095.

[99]  M. Beck,et al.  The multiconfiguration time-dependent Hartree (MCTDH) method: A highly efficient algorithm for propa , 1999 .

[100]  E. Zeidler Nonlinear Functional Analysis and its Applications: III: Variational Methods and Optimization , 1984 .

[101]  Felix J. Herrmann,et al.  Optimization on the Hierarchical Tucker manifold – Applications to tensor completion , 2014, Linear Algebra and its Applications.

[102]  Haobin Wang,et al.  Multilayer formulation of the multiconfiguration time-dependent Hartree theory , 2003 .

[103]  J. Kruskal Rank, decomposition, and uniqueness for 3-way and n -way arrays , 1989 .

[104]  Reinhold Schneider,et al.  Convergence Results for Projected Line-Search Methods on Varieties of Low-Rank Matrices Via Łojasiewicz Inequality , 2014, SIAM J. Optim..

[105]  Jacques-Louis Lions,et al.  Handbook of numerical analysis (volume VIII) , 2002 .

[106]  Emmanuel J. Candès,et al.  A Singular Value Thresholding Algorithm for Matrix Completion , 2008, SIAM J. Optim..

[107]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[108]  Umesh Vazirani,et al.  An area law and sub-exponential algorithm for 1D systems , 2013, 1301.1162.

[109]  L. Tucker,et al.  Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.

[110]  Pierre Comon,et al.  Nonnegative approximations of nonnegative tensors , 2009, ArXiv.

[111]  Eugene E. Tyrtyshnikov,et al.  Breaking the Curse of Dimensionality, Or How to Use SVD in Many Dimensions , 2009, SIAM J. Sci. Comput..

[112]  F. Verstraete,et al.  Tree tensor network state study of the ionic-neutral curve crossing of LiF , 2014, 1403.0981.

[113]  Mike E. Davies,et al.  Iterative Hard Thresholding for Compressed Sensing , 2008, ArXiv.

[114]  Lars Grasedyck,et al.  F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig a Projection Method to Solve Linear Systems in Tensor Format a Projection Method to Solve Linear Systems in Tensor Format , 2022 .

[115]  Ivan V. Oseledets,et al.  Time Integration of Tensor Trains , 2014, SIAM J. Numer. Anal..

[116]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[117]  Antonio Falcó,et al.  Geometric structures in tensor representations , 2013 .

[118]  W. Hackbusch,et al.  A New Scheme for the Tensor Representation , 2009 .

[119]  Ivan Oseledets,et al.  A new tensor decomposition , 2009 .

[120]  E. Cancès,et al.  Computational quantum chemistry: A primer , 2003 .

[121]  Reinhold Schneider,et al.  On manifolds of tensors of fixed TT-rank , 2012, Numerische Mathematik.

[122]  Reinhold Schneider,et al.  Variational calculus with sums of elementary tensors of fixed rank , 2012, Numerische Mathematik.

[123]  M. Fannes,et al.  Finitely correlated states on quantum spin chains , 1992 .

[124]  Reinhold Schneider,et al.  Tensor Product Approximation (DMRG) and Coupled Cluster method in Quantum Chemistry , 2013, 1310.2736.

[125]  Martin J. Mohlenkamp,et al.  Algorithms for Numerical Analysis in High Dimensions , 2005, SIAM J. Sci. Comput..

[126]  Dietrich Braess,et al.  On the efficient computation of high-dimensional integrals and the approximation by exponential sums , 2009 .

[127]  Andrzej Cichocki,et al.  Tensor Decompositions for Signal Processing Applications: From two-way to multiway component analysis , 2014, IEEE Signal Processing Magazine.

[128]  Lars Grasedyck,et al.  Existence and Computation of Low Kronecker-Rank Approximations for Large Linear Systems of Tensor Product Structure , 2004, Computing.

[129]  Christine Tobler,et al.  Multilevel preconditioning and low‐rank tensor iteration for space–time simultaneous discretizations of parabolic PDEs , 2015, Numer. Linear Algebra Appl..

[130]  Frank Noé,et al.  Variational tensor approach for approximating the rare-event kinetics of macromolecular systems. , 2016, The Journal of chemical physics.

[131]  J. Landsberg Tensors: Geometry and Applications , 2011 .

[132]  Piotr Zwiernik,et al.  Semialgebraic Statistics and Latent Tree Models , 2015 .

[133]  White,et al.  Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.

[134]  Daniel Kressner,et al.  Low-Rank Tensor Krylov Subspace Methods for Parametrized Linear Systems , 2011, SIAM J. Matrix Anal. Appl..

[135]  Frank Noé,et al.  On the Approximation Quality of Markov State Models , 2010, Multiscale Model. Simul..

[136]  Tobias Jahnke,et al.  On the approximation of high-dimensional differential equations in the hierarchical Tucker format , 2013, BIT Numerical Mathematics.

[137]  Ivan Oseledets,et al.  Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..

[138]  Martin J. Mohlenkamp,et al.  Numerical operator calculus in higher dimensions , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[139]  Ivan V. Oseledets,et al.  Solution of Linear Systems and Matrix Inversion in the TT-Format , 2012, SIAM J. Sci. Comput..

[140]  J. Olsen,et al.  Molecular electronic-structure theory , 2000 .

[141]  Lars Grasedyck,et al.  Hierarchical Singular Value Decomposition of Tensors , 2010, SIAM J. Matrix Anal. Appl..

[142]  P. Kroonenberg Applied Multiway Data Analysis , 2008 .

[143]  Ronald R. Coifman,et al.  Diffusion Maps, Reduction Coordinates, and Low Dimensional Representation of Stochastic Systems , 2008, Multiscale Model. Simul..

[144]  Reinhold Schneider,et al.  Low rank tensor recovery via iterative hard thresholding , 2016, ArXiv.

[145]  Wolfgang Hackbusch,et al.  Tensorisation of vectors and their efficient convolution , 2011, Numerische Mathematik.

[146]  Marie Billaud-Friess,et al.  A tensor approximation method based on ideal minimal residual formulations for the solution of high-dimensional problems ∗ , 2013, 1304.6126.

[147]  Daniel Kressner,et al.  A literature survey of low‐rank tensor approximation techniques , 2013, 1302.7121.

[148]  W. Hackbusch,et al.  On the Convergence of Alternating Least Squares Optimisation in Tensor Format Representations , 2015, 1506.00062.

[149]  Lars Grasedyck,et al.  Polynomial Approximation in Hierarchical Tucker Format by Vector – Tensorization , 2010 .

[150]  Omar M. Knio,et al.  Spectral Methods for Uncertainty Quantification , 2010 .

[151]  André Uschmajew,et al.  On Local Convergence of Alternating Schemes for Optimization of Convex Problems in the Tensor Train Format , 2013, SIAM J. Numer. Anal..

[152]  Antonio Falcó,et al.  Proper generalized decomposition for nonlinear convex problems in tensor Banach spaces , 2011, Numerische Mathematik.

[153]  E. Zeidler Nonlinear Functional Analysis and its Applications: IV: Applications to Mathematical Physics , 1997 .