Tensor Networks and Hierarchical Tensors for the Solution of High-Dimensional Partial Differential Equations
暂无分享,去创建一个
Reinhold Schneider | André Uschmajew | Markus Bachmayr | A. Uschmajew | R. Schneider | M. Bachmayr | André Uschmajew
[1] Trygve Helgaker,et al. Molecular Electronic-Structure Theory: Helgaker/Molecular Electronic-Structure Theory , 2000 .
[2] Antonio Falcó,et al. On Minimal Subspaces in Tensor Representations , 2012, Found. Comput. Math..
[3] André Uschmajew,et al. Local Convergence of the Alternating Least Squares Algorithm for Canonical Tensor Approximation , 2012, SIAM J. Matrix Anal. Appl..
[4] Wolfgang Hackbusch,et al. An Introduction to Hierarchical (H-) Rank and TT-Rank of Tensors with Examples , 2011, Comput. Methods Appl. Math..
[5] Boris N. Khoromskij,et al. Superfast Wavelet Transform Using Quantics-TT Approximation. I. Application to Haar Wavelets , 2014, Comput. Methods Appl. Math..
[6] Sandeep Sharma,et al. The density matrix renormalization group in quantum chemistry. , 2011, Annual review of physical chemistry.
[7] R. DeVore,et al. Nonlinear approximation , 1998, Acta Numerica.
[8] Robert E. Mahony,et al. Optimization Algorithms on Matrix Manifolds , 2007 .
[9] Alan Edelman,et al. The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..
[10] Lars Grasedyck,et al. Tree Adaptive Approximation in the Hierarchical Tensor Format , 2014, SIAM J. Sci. Comput..
[11] B. Khoromskij,et al. Tensor-structured Galerkin approximation of parametric and stochastic elliptic PDEs , 2010 .
[12] Reinhold Schneider,et al. Adaptive stochastic Galerkin FEM with hierarchical tensor representations , 2015, Numerische Mathematik.
[13] R. DeVore,et al. Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDEs , 2010 .
[14] Claude Jeffrey Gittelson,et al. Adaptive stochastic Galerkin FEM , 2013 .
[15] G. W. Stewart,et al. On the Early History of the Singular Value Decomposition , 1993, SIAM Rev..
[16] W. Hackbusch. Tensor Spaces and Numerical Tensor Calculus , 2012, Springer Series in Computational Mathematics.
[17] Wolfgang Dahmen,et al. Adaptive Near-Optimal Rank Tensor Approximation for High-Dimensional Operator Equations , 2013, Foundations of Computational Mathematics.
[18] Othmar Koch,et al. Dynamical Tensor Approximation , 2010, SIAM J. Matrix Anal. Appl..
[19] Nadav Cohen,et al. On the Expressive Power of Deep Learning: A Tensor Analysis , 2015, COLT 2016.
[20] E. Tyrtyshnikov,et al. TT-cross approximation for multidimensional arrays , 2010 .
[21] Ivan Oseledets,et al. Recursive decomposition of multidimensional tensors , 2009 .
[22] Yang Qi,et al. On the geometry of tensor network states , 2011, Quantum Inf. Comput..
[23] Reinhold Schneider,et al. Dynamical Approximation by Hierarchical Tucker and Tensor-Train Tensors , 2013, SIAM J. Matrix Anal. Appl..
[24] J. Ballani,et al. Black box approximation of tensors in hierarchical Tucker format , 2013 .
[25] Patrick L. Combettes,et al. Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..
[26] Wolfgang Dahmen,et al. Tensor-Sparsity of Solutions to High-Dimensional Elliptic Partial Differential Equations , 2014, Found. Comput. Math..
[27] Vladimir A. Kazeev,et al. Quantized tensor-structured finite elements for second-order elliptic PDEs in two dimensions , 2018, Numerische Mathematik.
[28] Lek-Heng Lim. Tensors and Hypermatrices , 2013 .
[29] F. Verstraete,et al. Tensor product methods and entanglement optimization for ab initio quantum chemistry , 2014, 1412.5829.
[30] P. Comon,et al. Tensor decompositions, alternating least squares and other tales , 2009 .
[31] S. Dahlke. Extraction of quantifiable information from complex systems , 2014 .
[32] André Uschmajew. Zur Theorie der Niedrigrangapproximation in Tensorprodukten von Hilberträumen , 2013 .
[33] Claude Jeffrey Gittelson,et al. Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs* , 2011, Acta Numerica.
[34] Christopher J. Hillar,et al. Most Tensor Problems Are NP-Hard , 2009, JACM.
[35] A. Uschmajew,et al. On low-rank approximability of solutions to high-dimensional operator equations and eigenvalue problems , 2014, 1406.7026.
[36] Volker Bach,et al. Many-Electron Approaches in Physics, Chemistry and Mathematics , 2014 .
[37] Martin J. Mohlenkamp. Musings on multilinear fitting , 2013 .
[38] C. Lubich. From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis , 2008 .
[39] Daniel Kressner,et al. Low-Rank Tensor Methods with Subspace Correction for Symmetric Eigenvalue Problems , 2014, SIAM J. Sci. Comput..
[40] Wolfgang Dahmen,et al. Adaptive Low-Rank Methods: Problems on Sobolev Spaces , 2014, SIAM J. Numer. Anal..
[41] C. Eckart,et al. The approximation of one matrix by another of lower rank , 1936 .
[42] Daniel Kressner,et al. Preconditioned Low-Rank Methods for High-Dimensional Elliptic PDE Eigenvalue Problems , 2011, Comput. Methods Appl. Math..
[43] Bart Vandereycken,et al. Low-rank tensor completion by Riemannian optimization , 2014 .
[44] Vin de Silva,et al. Tensor rank and the ill-posedness of the best low-rank approximation problem , 2006, math/0607647.
[45] Wolfgang Hackbusch,et al. Numerical tensor calculus* , 2014, Acta Numerica.
[46] Vladas Sidoravicius,et al. Stochastic Processes and Applications , 2007 .
[47] Richard A. Harshman,et al. Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .
[48] S. V. Dolgov,et al. ALTERNATING MINIMAL ENERGY METHODS FOR LINEAR SYSTEMS IN HIGHER DIMENSIONS∗ , 2014 .
[49] Wolfgang Hackbusch. $$L^{\infty }$$ estimation of tensor truncations , 2013, Numerische Mathematik.
[50] S. Lang. Fundamentals of differential geometry , 1998 .
[51] Bart Vandereycken,et al. The geometry of algorithms using hierarchical tensors , 2013, Linear Algebra and its Applications.
[52] S. White. Density matrix renormalization group algorithms with a single center site , 2005, cond-mat/0508709.
[53] R. Tempone,et al. ON THE OPTIMAL POLYNOMIAL APPROXIMATION OF STOCHASTIC PDES BY GALERKIN AND COLLOCATION METHODS , 2012 .
[54] G. Pavliotis. Stochastic Processes and Applications: Diffusion Processes, the Fokker-Planck and Langevin Equations , 2014 .
[55] I. Daubechies,et al. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.
[56] G. Vidal. Efficient classical simulation of slightly entangled quantum computations. , 2003, Physical review letters.
[57] Boris N. Khoromskij,et al. Computation of extreme eigenvalues in higher dimensions using block tensor train format , 2013, Comput. Phys. Commun..
[58] Pierre Ladevèze,et al. Separated Representations and PGD-Based Model Reduction , 2014 .
[59] Markus Bachmayr,et al. Iterative Methods Based on Soft Thresholding of Hierarchical Tensors , 2017, Found. Comput. Math..
[60] Reinhold Schneider,et al. Approximation rates for the hierarchical tensor format in periodic Sobolev spaces , 2014, J. Complex..
[61] Boris N. Khoromskij,et al. Approximate iterations for structured matrices , 2008, Numerische Mathematik.
[62] Eugene E. Tyrtyshnikov,et al. Algebraic Wavelet Transform via Quantics Tensor Train Decomposition , 2011, SIAM J. Sci. Comput..
[63] S. V. DOLGOV,et al. Fast Solution of Parabolic Problems in the Tensor Train/Quantized Tensor Train Format with Initial Application to the Fokker-Planck Equation , 2012, SIAM J. Sci. Comput..
[64] P. Comon,et al. Higher-order power method - application in independent component analysis , 1995 .
[65] Paul W. Ayers,et al. The density matrix renormalization group for ab initio quantum chemistry , 2013, The European Physical Journal D.
[66] Bart Vandereycken,et al. Low-Rank Matrix Completion by Riemannian Optimization , 2013, SIAM J. Optim..
[67] RWTH Aachen,et al. Adaptive Low-Rank Methods for Problems on Sobolev Spaces with Error Control in $L_2$ , 2014, 1412.3951.
[68] B. Khoromskij,et al. Tensor-product approach to global time-space-parametric discretization of chemical master equation , 2012 .
[69] F. Verstraete,et al. Post-matrix product state methods: To tangent space and beyond , 2013, 1305.1894.
[70] Vladimir N. Temlyakov,et al. Nonlinear tensor product approximation of functions , 2014, J. Complex..
[71] Andrzej Cichocki,et al. Era of Big Data Processing: A New Approach via Tensor Networks and Tensor Decompositions , 2014, ArXiv.
[72] Bernd Eggers,et al. Nonlinear Functional Analysis And Its Applications , 2016 .
[73] U. Schollwoeck. The density-matrix renormalization group in the age of matrix product states , 2010, 1008.3477.
[74] B. Khoromskij. O(dlog N)-Quantics Approximation of N-d Tensors in High-Dimensional Numerical Modeling , 2011 .
[75] R. Ghanem,et al. Polynomial Chaos in Stochastic Finite Elements , 1990 .
[76] Reinhold Schneider,et al. Optimization problems in contracted tensor networks , 2011, Comput. Vis. Sci..
[77] C. Lubich,et al. A projector-splitting integrator for dynamical low-rank approximation , 2013, BIT Numerical Mathematics.
[78] Reinhold Schneider,et al. Tensor Spaces and Hierarchical Tensor Representations , 2014 .
[79] 慧 廣瀬. A Mathematical Introduction to Compressive Sensing , 2015 .
[80] E. Schmidt. Zur Theorie der linearen und nichtlinearen Integralgleichungen , 1907 .
[81] Tamara G. Kolda,et al. Tensor Decompositions and Applications , 2009, SIAM Rev..
[82] Christine Tobler,et al. Low-rank tensor methods for linear systems and eigenvalue problems , 2012 .
[83] Uwe Helmke,et al. Critical points of matrix least squares distance functions , 1995 .
[84] Albert Cohen,et al. Kolmogorov widths and low-rank approximations of parametric elliptic PDEs , 2015, Math. Comput..
[85] F. L. Hitchcock. Multiple Invariants and Generalized Rank of a P‐Way Matrix or Tensor , 1928 .
[86] D. Xiu. Numerical Methods for Stochastic Computations: A Spectral Method Approach , 2010 .
[87] J. Chang,et al. Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .
[88] A. Uschmajew,et al. A new convergence proof for the higher-order power method and generalizations , 2014, 1407.4586.
[89] F. L. Hitchcock. The Expression of a Tensor or a Polyadic as a Sum of Products , 1927 .
[90] Albert Cohen,et al. Convergence Rates of Best N-term Galerkin Approximations for a Class of Elliptic sPDEs , 2010, Found. Comput. Math..
[91] B. Khoromskij,et al. DMRG+QTT approach to computation of the ground state for the molecular Schrödinger operator , 2010 .
[92] Jared Tanner,et al. Normalized Iterative Hard Thresholding for Matrix Completion , 2013, SIAM J. Sci. Comput..
[93] André Uschmajew,et al. Well-posedness of convex maximization problems on Stiefel manifolds and orthogonal tensor product approximations , 2010, Numerische Mathematik.
[94] Reinhold Schneider,et al. The Alternating Linear Scheme for Tensor Optimization in the Tensor Train Format , 2012, SIAM J. Sci. Comput..
[95] Mateusz Michalek,et al. The Hackbusch conjecture on tensor formats , 2015 .
[96] Antje Winkel,et al. Modern Quantum Chemistry , 2016 .
[97] Wotao Yin,et al. A Block Coordinate Descent Method for Regularized Multiconvex Optimization with Applications to Nonnegative Tensor Factorization and Completion , 2013, SIAM J. Imaging Sci..
[98] Virginie Ehrlacher,et al. Convergence of a greedy algorithm for high-dimensional convex nonlinear problems , 2010, 1004.0095.
[99] M. Beck,et al. The multiconfiguration time-dependent Hartree (MCTDH) method: A highly efficient algorithm for propa , 1999 .
[100] E. Zeidler. Nonlinear Functional Analysis and its Applications: III: Variational Methods and Optimization , 1984 .
[101] Felix J. Herrmann,et al. Optimization on the Hierarchical Tucker manifold – Applications to tensor completion , 2014, Linear Algebra and its Applications.
[102] Haobin Wang,et al. Multilayer formulation of the multiconfiguration time-dependent Hartree theory , 2003 .
[103] J. Kruskal. Rank, decomposition, and uniqueness for 3-way and n -way arrays , 1989 .
[104] Reinhold Schneider,et al. Convergence Results for Projected Line-Search Methods on Varieties of Low-Rank Matrices Via Łojasiewicz Inequality , 2014, SIAM J. Optim..
[105] Jacques-Louis Lions,et al. Handbook of numerical analysis (volume VIII) , 2002 .
[106] Emmanuel J. Candès,et al. A Singular Value Thresholding Algorithm for Matrix Completion , 2008, SIAM J. Optim..
[107] R. Ghanem,et al. Stochastic Finite Elements: A Spectral Approach , 1990 .
[108] Umesh Vazirani,et al. An area law and sub-exponential algorithm for 1D systems , 2013, 1301.1162.
[109] L. Tucker,et al. Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.
[110] Pierre Comon,et al. Nonnegative approximations of nonnegative tensors , 2009, ArXiv.
[111] Eugene E. Tyrtyshnikov,et al. Breaking the Curse of Dimensionality, Or How to Use SVD in Many Dimensions , 2009, SIAM J. Sci. Comput..
[112] F. Verstraete,et al. Tree tensor network state study of the ionic-neutral curve crossing of LiF , 2014, 1403.0981.
[113] Mike E. Davies,et al. Iterative Hard Thresholding for Compressed Sensing , 2008, ArXiv.
[114] Lars Grasedyck,et al. F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig a Projection Method to Solve Linear Systems in Tensor Format a Projection Method to Solve Linear Systems in Tensor Format , 2022 .
[115] Ivan V. Oseledets,et al. Time Integration of Tensor Trains , 2014, SIAM J. Numer. Anal..
[116] Joos Vandewalle,et al. A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..
[117] Antonio Falcó,et al. Geometric structures in tensor representations , 2013 .
[118] W. Hackbusch,et al. A New Scheme for the Tensor Representation , 2009 .
[119] Ivan Oseledets,et al. A new tensor decomposition , 2009 .
[120] E. Cancès,et al. Computational quantum chemistry: A primer , 2003 .
[121] Reinhold Schneider,et al. On manifolds of tensors of fixed TT-rank , 2012, Numerische Mathematik.
[122] Reinhold Schneider,et al. Variational calculus with sums of elementary tensors of fixed rank , 2012, Numerische Mathematik.
[123] M. Fannes,et al. Finitely correlated states on quantum spin chains , 1992 .
[124] Reinhold Schneider,et al. Tensor Product Approximation (DMRG) and Coupled Cluster method in Quantum Chemistry , 2013, 1310.2736.
[125] Martin J. Mohlenkamp,et al. Algorithms for Numerical Analysis in High Dimensions , 2005, SIAM J. Sci. Comput..
[126] Dietrich Braess,et al. On the efficient computation of high-dimensional integrals and the approximation by exponential sums , 2009 .
[127] Andrzej Cichocki,et al. Tensor Decompositions for Signal Processing Applications: From two-way to multiway component analysis , 2014, IEEE Signal Processing Magazine.
[128] Lars Grasedyck,et al. Existence and Computation of Low Kronecker-Rank Approximations for Large Linear Systems of Tensor Product Structure , 2004, Computing.
[129] Christine Tobler,et al. Multilevel preconditioning and low‐rank tensor iteration for space–time simultaneous discretizations of parabolic PDEs , 2015, Numer. Linear Algebra Appl..
[130] Frank Noé,et al. Variational tensor approach for approximating the rare-event kinetics of macromolecular systems. , 2016, The Journal of chemical physics.
[131] J. Landsberg. Tensors: Geometry and Applications , 2011 .
[132] Piotr Zwiernik,et al. Semialgebraic Statistics and Latent Tree Models , 2015 .
[133] White,et al. Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.
[134] Daniel Kressner,et al. Low-Rank Tensor Krylov Subspace Methods for Parametrized Linear Systems , 2011, SIAM J. Matrix Anal. Appl..
[135] Frank Noé,et al. On the Approximation Quality of Markov State Models , 2010, Multiscale Model. Simul..
[136] Tobias Jahnke,et al. On the approximation of high-dimensional differential equations in the hierarchical Tucker format , 2013, BIT Numerical Mathematics.
[137] Ivan Oseledets,et al. Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..
[138] Martin J. Mohlenkamp,et al. Numerical operator calculus in higher dimensions , 2002, Proceedings of the National Academy of Sciences of the United States of America.
[139] Ivan V. Oseledets,et al. Solution of Linear Systems and Matrix Inversion in the TT-Format , 2012, SIAM J. Sci. Comput..
[140] J. Olsen,et al. Molecular electronic-structure theory , 2000 .
[141] Lars Grasedyck,et al. Hierarchical Singular Value Decomposition of Tensors , 2010, SIAM J. Matrix Anal. Appl..
[142] P. Kroonenberg. Applied Multiway Data Analysis , 2008 .
[143] Ronald R. Coifman,et al. Diffusion Maps, Reduction Coordinates, and Low Dimensional Representation of Stochastic Systems , 2008, Multiscale Model. Simul..
[144] Reinhold Schneider,et al. Low rank tensor recovery via iterative hard thresholding , 2016, ArXiv.
[145] Wolfgang Hackbusch,et al. Tensorisation of vectors and their efficient convolution , 2011, Numerische Mathematik.
[146] Marie Billaud-Friess,et al. A tensor approximation method based on ideal minimal residual formulations for the solution of high-dimensional problems ∗ , 2013, 1304.6126.
[147] Daniel Kressner,et al. A literature survey of low‐rank tensor approximation techniques , 2013, 1302.7121.
[148] W. Hackbusch,et al. On the Convergence of Alternating Least Squares Optimisation in Tensor Format Representations , 2015, 1506.00062.
[149] Lars Grasedyck,et al. Polynomial Approximation in Hierarchical Tucker Format by Vector – Tensorization , 2010 .
[150] Omar M. Knio,et al. Spectral Methods for Uncertainty Quantification , 2010 .
[151] André Uschmajew,et al. On Local Convergence of Alternating Schemes for Optimization of Convex Problems in the Tensor Train Format , 2013, SIAM J. Numer. Anal..
[152] Antonio Falcó,et al. Proper generalized decomposition for nonlinear convex problems in tensor Banach spaces , 2011, Numerische Mathematik.
[153] E. Zeidler. Nonlinear Functional Analysis and its Applications: IV: Applications to Mathematical Physics , 1997 .