Guaranteed Conditional Performance of Control Charts via Bootstrap Methods

To use control charts in practice, the in-control state usually has to be estimated. This estimation has a detrimental effect on the performance of control charts, which is often measured by the false alarm probability or the average run length. We suggest an adjustment of the monitoring schemes to overcome these problems. It guarantees, with a certain probability, a conditional performance given the estimated in-control state. The suggested method is based on bootstrapping the data used to estimate the in-control state. The method applies to different types of control charts, and also works with charts based on regression models. If a non-parametric bootstrap is used, the method is robust to model errors. We show large sample properties of the adjustment. The usefulness of our approach is demonstrated through simulation studies.

[1]  Charles W. Champ,et al.  Effects of Parameter Estimation on Control Chart Properties: A Literature Review , 2006 .

[2]  Landon H. Sego,et al.  Risk‐adjusted monitoring of survival times , 2009, Statistics in medicine.

[3]  Willem Albers,et al.  New Corrections for Old Control Charts , 2003 .

[4]  Thong Ngee Goh,et al.  Some effective control chart procedures for reliability monitoring , 2002, Reliab. Eng. Syst. Saf..

[5]  P. Maravelakis,et al.  A CUSUM control chart for monitoring the variance when parameters are estimated , 2011 .

[6]  D. A. Evans,et al.  An approach to the probability distribution of cusum run length , 1972 .

[7]  Claudia Kirch,et al.  Bootstrapping sequential change-point tests for linear regression , 2012 .

[8]  D. Freedman Bootstrapping Regression Models , 1981 .

[9]  Piotr Kokoszka,et al.  Monitoring changes in linear models , 2004 .

[10]  Joe H. Sullivan,et al.  A Self-Starting Control Chart for Multivariate Individual Observations , 2002, Technometrics.

[11]  Charles W. Champ,et al.  The Run Length Distribution of the CUSUM with Estimated Parameters , 2004 .

[12]  Wilbert C.M. Kallenberg,et al.  Parametric control charts , 2003 .

[13]  Wilbert C.M. Kallenberg,et al.  Estimation in Shewhart control charts: effects and corrections , 2004 .

[14]  York Marcel Dekker The State of Statistical Process Control as We Proceed into the 21st Century , 2000 .

[15]  P. A. Bennett Practical Reliability Engineering , 1982 .

[16]  I Heuch,et al.  A new sequential procedure for surveillance of Down's syndrome. , 1993, Statistics in medicine.

[17]  A. V. D. Vaart Asymptotic Statistics: Delta Method , 1998 .

[18]  Claudia Kirch,et al.  Bootstrapping Sequential Change-Point Tests , 2008 .

[19]  Charles W. Champ,et al.  Properties of Multivariate Control Charts with Estimated Parameters , 2007 .

[20]  Andrew B. Lawson,et al.  Spatial and syndromic surveillance for public health , 2005 .

[21]  D. Hawkins Self‐Starting Cusum Charts for Location and Scale , 1987 .

[22]  Vern T. Farewell,et al.  An overview of risk‐adjusted charts , 2004 .

[23]  A. V. D. Vaart,et al.  Asymptotic Statistics: Frontmatter , 1998 .

[24]  Elisabeth J. Umble,et al.  Cumulative Sum Charts and Charting for Quality Improvement , 2001, Technometrics.

[25]  Snigdhansu Chatterjee,et al.  Distribution-free cumulative sum control charts using bootstrap-based control limits , 2009, 0906.1421.

[26]  G. Moustakides Optimal stopping times for detecting changes in distributions , 1986 .

[27]  Mikhail Nikulin,et al.  Statistical planning and inference in accelerated life testing using the CHSS model , 2004 .

[28]  Liu Jian-bin Nonparametric Control Charts Based On Medians , 2005 .

[29]  Wilbert C.M. Kallenberg,et al.  Self-adapting control charts , 2004 .

[30]  Pinaki Biswas,et al.  A risk‐adjusted CUSUM in continuous time based on the Cox model , 2008, Statistics in medicine.

[31]  Jan Terje Kvaløy,et al.  Risk-adjusted monitoring of time to event , 2010 .

[32]  William H. Woodall,et al.  The Use of Control Charts in Health-Care and Public-Health Surveillance , 2006 .

[33]  William H. Woodall,et al.  The State of Statistical Process Control as We Proceed into the 21st Century , 2000 .

[34]  Willem Albers The optimal choice of negative binomial charts for monitoring high-quality processes , 2008 .

[35]  Charles W. Champ,et al.  Encyclopedia of Statistics in Quality and Reliability , 2007 .

[36]  G. Masarotto,et al.  Bootstrap-based design of residual control charts , 2009 .

[37]  A. R. Crathorne,et al.  Economic Control of Quality of Manufactured Product. , 1933 .

[38]  J. Durbin,et al.  Techniques for Testing the Constancy of Regression Relationships Over Time , 1975 .

[39]  G. Harper Monitoring the changes , 2011 .

[40]  A. Bottle,et al.  Intelligent information: a national system for monitoring clinical performance. , 2007, Health services research.

[41]  Wilbert C.M. Kallenberg,et al.  Exceedance probabilities for parametric control charts , 2002 .

[42]  M. Kosorok Introduction to Empirical Processes and Semiparametric Inference , 2008 .

[43]  Mitra Fouladirad,et al.  On the use of on-line detection for maintenance of gradually deteriorating systems , 2008, Reliab. Eng. Syst. Saf..

[44]  Raymond G. Carey,et al.  Improving Healthcare with Control Charts: Basic and Advanced SPC Methods and Case Studies , 2002 .

[45]  Mark Jones,et al.  Risk‐adjusted survival time monitoring with an updating exponentially weighted moving average (EWMA) control chart , 2009, Statistics in medicine.

[46]  M. Frisén,et al.  Semiparametric Surveillance of Monotonic Changes , 2009 .

[47]  Wilbert C.M. Kallenberg,et al.  Are estimated control charts in control? , 2001 .

[48]  Philippe Castagliola,et al.  Computational Statistics and Data Analysis an Ewma Chart for Monitoring the Process Standard Deviation When Parameters Are Estimated , 2022 .

[49]  S. Steiner,et al.  Monitoring surgical performance using risk-adjusted cumulative sum charts. , 2000, Biostatistics.

[50]  Philippe Castagliola,et al.  The synthetic [Xbar] chart with estimated parameters , 2011 .

[51]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[52]  E. S. Page CONTINUOUS INSPECTION SCHEMES , 1954 .

[53]  A. Aue,et al.  Change-Point Monitoring in Linear Models , 2006 .

[54]  L. Allison Jones,et al.  The Statistical Design of EWMA Control Charts with Estimated Parameters , 2002 .