暂无分享,去创建一个
Daniel M. Kane | Ilias Diakonikolas | Alistair Stewart | Ilias Diakonikolas | D. Kane | Alistair Stewart
[1] Paul W. Goldberg,et al. Evolutionary Trees Can be Learned in Polynomial Time in the Two-State General Markov Model , 2001, SIAM J. Comput..
[2] Sariel Har-Peled. Geometric Approximation Algorithms , 2011 .
[3] B. Carl,et al. Entropy, Compactness and the Approximation of Operators , 1990 .
[4] A. Izenman. Recent Developments in Nonparametric Density Estimation , 1991 .
[5] D. W. Scott,et al. Multivariate Density Estimation, Theory, Practice and Visualization , 1992 .
[6] Yishay Mansour,et al. Estimating a mixture of two product distributions , 1999, COLT '99.
[7] Siméon-Denis Poisson. Recherches sur la probabilité des jugements en matière criminelle et en matiére civile, précédées des règles générales du calcul des probabilités , 1837 .
[8] H. Chernoff. A Measure of Asymptotic Efficiency for Tests of a Hypothesis Based on the sum of Observations , 1952 .
[9] L. Devroye,et al. Nonparametric density estimation : the L[1] view , 1987 .
[10] Peter E. Latham,et al. Mutual Information , 2006 .
[11] Luc Devroye,et al. Combinatorial methods in density estimation , 2001, Springer series in statistics.
[12] J. Feldman,et al. Learning mixtures of product distributions over discrete domains , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).
[13] Xi Chen,et al. On the Complexity of Nash Equilibria in Anonymous Games , 2014, STOC.
[14] Ronitt Rubinfeld,et al. On the learnability of discrete distributions , 1994, STOC '94.
[15] M. Blonski. Anonymous Games with Binary Actions , 1999 .
[16] Luc Devroye,et al. Nonparametric Density Estimation , 1985 .
[17] Adityanand Guntuboyina,et al. Covering Numbers for Convex Functions , 2012, IEEE Transactions on Information Theory.
[18] M. Blonski. The women of Cairo Equilibria in large anonymous games , 2005 .
[19] M. Fowler,et al. Function Spaces , 2022 .
[20] Rocco A. Servedio,et al. Explorer Efficient Density Estimation via Piecewise Polynomial Approximation , 2013 .
[21] Jon A. Wellner,et al. Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .
[22] Ryan O'Donnell,et al. Learning Sums of Independent Integer Random Variables , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.
[23] Christos H. Papadimitriou,et al. On oblivious PTAS's for nash equilibrium , 2009, STOC '09.
[24] Rocco A. Servedio,et al. Learning k-Modal Distributions via Testing , 2012, Theory Comput..
[25] W. Rudin. Principles of mathematical analysis , 1964 .
[26] D. Haussler,et al. MUTUAL INFORMATION, METRIC ENTROPY AND CUMULATIVE RELATIVE ENTROPY RISK , 1997 .
[27] C. Papadimitriou,et al. Computing Equilibria in Anonymous Games , 2007, FOCS 2007.
[28] I. Ibragimov,et al. On density estimation in the view of Kolmogorov's ideas in approximation theory , 1990 .
[29] G. Lorentz. Metric entropy and approximation , 1966 .
[30] S. Sheather. Density Estimation , 2004 .
[31] Yuly Makovoz. On the Kolmogorov complexity of functions of finite smoothness , 1986, J. Complex..
[32] A. Kolmogorov,et al. Entropy and "-capacity of sets in func-tional spaces , 1961 .
[33] J. Kruopis,et al. Precision of approximation of the generalized binomial distribution by convolutions of Poisson measures , 1986 .
[34] Jun S. Liu,et al. STATISTICAL APPLICATIONS OF THE POISSON-BINOMIAL AND CONDITIONAL BERNOULLI DISTRIBUTIONS , 1997 .
[35] W. Hoeffding. Probability Inequalities for sums of Bounded Random Variables , 1963 .
[36] Ankur Moitra,et al. Settling the Polynomial Learnability of Mixtures of Gaussians , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.
[37] J. M. Bremner,et al. Statistical Inference under Restrictions , 1973 .
[38] Mikhail Belkin,et al. Polynomial Learning of Distribution Families , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.
[39] Christos H. Papadimitriou,et al. Approximate Nash equilibria in anonymous games , 2015, J. Econ. Theory.
[40] Adam Tauman Kalai,et al. Efficiently learning mixtures of two Gaussians , 2010, STOC '10.
[41] L. Birge,et al. On estimating a density using Hellinger distance and some other strange facts , 1986 .
[42] Devdatt P. Dubhashi,et al. Concentration of Measure for the Analysis of Randomized Algorithms: Contents , 2009 .
[43] R. Dudley. Metric Entropy of Some Classes of Sets with Differentiable Boundaries , 1974 .
[44] Sanjeev Arora,et al. Learning mixtures of arbitrary gaussians , 2001, STOC '01.
[45] Santosh S. Vempala,et al. A spectral algorithm for learning mixtures of distributions , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..
[46] Alexandre B. Tsybakov,et al. Introduction to Nonparametric Estimation , 2008, Springer series in statistics.
[47] Martin Raič,et al. Normal Approximation by Stein ’ s Method , 2003 .
[48] Christos H. Papadimitriou,et al. Sparse covers for sums of indicators , 2013, ArXiv.
[49] H. Triebel,et al. Function Spaces, Entropy Numbers, Differential Operators: Function Spaces , 1996 .
[50] E. L. Presman,et al. Approximation of Binomial Distributions by Infinitely Divisible Ones , 1984 .
[51] I. Milchtaich,et al. Congestion Games with Player-Specific Payoff Functions , 1996 .
[52] Yuhong Yang,et al. Information-theoretic determination of minimax rates of convergence , 1999 .
[53] Fuchang Gao,et al. Metric entropy of high dimensional distributions , 2007 .
[54] Y. Yatracos. Rates of Convergence of Minimum Distance Estimators and Kolmogorov's Entropy , 1985 .
[55] P. Assouad. Deux remarques sur l'estimation , 1983 .
[56] Rocco A. Servedio,et al. Learning Poisson Binomial Distributions , 2011, STOC '12.
[57] Leslie G. Valiant,et al. A theory of the learnable , 1984, CACM.
[58] A. Barbour,et al. Poisson Approximation , 1992 .