Systems Analysis of Plant Functional, Transcriptional, Physical Interaction, and Metabolic Networks

Physiological responses, developmental programs, and cellular functions rely on complex networks of interactions at different levels and scales. Systems biology brings together high-throughput biochemical, genetic, and molecular approaches to generate omics data that can be analyzed and used in mathematical and computational models toward uncovering these networks on a global scale. Various approaches, including transcriptomics, proteomics, interactomics, and metabolomics, have been employed to obtain these data on the cellular, tissue, organ, and whole-plant level. We summarize progress on gene regulatory, cofunction, protein interaction, and metabolic networks. We also illustrate the main approaches that have been used to obtain these networks, with specific examples from Arabidopsis thaliana, and describe the pros and cons of each approach.

[1]  Stephane Rombauts,et al.  Functional Modules in the Arabidopsis Core Cell Cycle Binary Protein–Protein Interaction Network[W] , 2010, Plant Cell.

[2]  Hyojin Kang,et al.  Genome-Wide Analysis of Genes Targeted by PHYTOCHROME INTERACTING FACTOR 3-LIKE5 during Seed Germination in Arabidopsis , 2009 .

[3]  Peter D. Karp,et al.  The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases , 2013, Nucleic Acids Res..

[4]  Robert M. Buels,et al.  The Sol Genomics Network (solgenomics.net): growing tomatoes using Perl , 2010, Nucleic Acids Res..

[5]  Staffan Persson,et al.  Co-expression tools for plant biology: opportunities for hypothesis generation and caveats. , 2009, Plant, cell & environment.

[6]  R. Mittler,et al.  Proteomic profiling of tandem affinity purified 14‐3‐3 protein complexes in Arabidopsis thaliana , 2009, Proteomics.

[7]  M. Daly,et al.  Guilt by association , 2000, Nature Genetics.

[8]  C. Smaczniak,et al.  Target Genes of the MADS Transcription Factor SEPALLATA3: Integration of Developmental and Hormonal Pathways in the Arabidopsis Flower , 2009, PLoS biology.

[9]  J. Franco-Zorrilla,et al.  The Arabidopsis bHLH Transcription Factors MYC3 and MYC4 Are Targets of JAZ Repressors and Act Additively with MYC2 in the Activation of Jasmonate Responses[C][W] , 2011, Plant Cell.

[10]  Gary D. Bader,et al.  An automated method for finding molecular complexes in large protein interaction networks , 2003, BMC Bioinformatics.

[11]  Daniel L. Mace,et al.  Cell Identity Mediates the Response of Arabidopsis Roots to Abiotic Stress , 2008, Science.

[12]  R. Sharan,et al.  A genome-scale computational study of the interplay between transcriptional regulation and metabolism , 2007, Molecular systems biology.

[13]  Jason A. Corwin,et al.  Combining Genome-Wide Association Mapping and Transcriptional Networks to Identify Novel Genes Controlling Glucosinolates in Arabidopsis thaliana , 2011, PLoS biology.

[14]  E. Ruppin,et al.  Regulatory on/off minimization of metabolic flux changes after genetic perturbations. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Jonathan D. G. Jones,et al.  Evidence for Network Evolution in an Arabidopsis Interactome Map , 2011, Science.

[16]  Elliot M. Meyerowitz,et al.  Orchestration of Floral Initiation by APETALA1 , 2010, Science.

[17]  K. Morohashi,et al.  A Systems Approach Reveals Regulatory Circuitry for Arabidopsis Trichome Initiation by the GL3 and GL1 Selectors , 2009, PLoS genetics.

[18]  Yves Gibon,et al.  Integration of metabolite with transcript and enzyme activity profiling during diurnal cycles in Arabidopsis rosettes , 2006, Genome Biology.

[19]  A. Stromberg,et al.  Global Identification of Targets of the Arabidopsis MADS Domain Protein AGAMOUS-Like15[C][W] , 2009, The Plant Cell Online.

[20]  Yudong D. He,et al.  Functional Discovery via a Compendium of Expression Profiles , 2000, Cell.

[21]  Molly Megraw,et al.  A stele-enriched gene regulatory network in the Arabidopsis root , 2011, Molecular systems biology.

[22]  A. Loraine,et al.  Assembly of an Interactive Correlation Network for the Arabidopsis Genome Using a Novel Heuristic Clustering Algorithm1[W] , 2009, Plant Physiology.

[23]  Ian M. Donaldson,et al.  The Biomolecular Interaction Network Database and related tools 2005 update , 2004, Nucleic Acids Res..

[24]  S. Schellmann,et al.  The Arabidopsis ESCRT protein–protein interaction network , 2011, Plant Molecular Biology.

[25]  Damian Szklarczyk,et al.  The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored , 2010, Nucleic Acids Res..

[26]  Takeshi Mizuno,et al.  Data assimilation constrains new connections and components in a complex, eukaryotic circadian clock model , 2010, Molecular Systems Biology.

[27]  S. Henikoff,et al.  A simple method for gene expression and chromatin profiling of individual cell types within a tissue. , 2010, Developmental cell.

[28]  Masao Nagasaki,et al.  Modelling the Molecular Interactions in the Flower Developmental Network of Arabidopsis thaliana , 2010, Silico Biol..

[29]  Franck Picard,et al.  A mixture model for random graphs , 2008, Stat. Comput..

[30]  D. Kliebenstein Advancing Genetic Theory and Application by Metabolic Quantitative Trait Loci Analysis , 2009, The Plant Cell Online.

[31]  Joshua M. Stuart,et al.  A Gene Expression Map for Caenorhabditis elegans , 2001, Science.

[32]  Qingqiu Gong,et al.  An Arabidopsis gene network based on the graphical Gaussian model. , 2007, Genome research.

[33]  Jörg Schwender,et al.  Metabolic flux analysis as a tool in metabolic engineering of plants. , 2008, Current opinion in biotechnology.

[34]  Lothar Thiele,et al.  A systematic comparison and evaluation of biclustering methods for gene expression data , 2006, Bioinform..

[35]  Adam M. Feist,et al.  The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli , 2008, Nature Biotechnology.

[36]  Markus J. Herrgård,et al.  Integrating high-throughput and computational data elucidates bacterial networks , 2004, Nature.

[37]  F. Blattner,et al.  In silico design and adaptive evolution of Escherichia coli for production of lactic acid. , 2005, Biotechnology and bioengineering.

[38]  Jason A. Papin,et al.  Metabolic network reconstruction of Chlamydomonas offers insight into light-driven algal metabolism , 2011, Molecular systems biology.

[39]  Detlef Weigel,et al.  Comprehensive Interaction Map of the Arabidopsis MADS Box Transcription Factorsw⃞ , 2005, The Plant Cell Online.

[40]  M. Yamazaki,et al.  A polyhedral approach for understanding flavonoid biosynthesis in Arabidopsis. , 2010, New biotechnology.

[41]  Congmao Wang,et al.  ANAP: An Integrated Knowledge Base for Arabidopsis Protein Interaction Network Analysis1[C][W][OA] , 2012, Plant Physiology.

[42]  Adrian E. Raftery,et al.  Enhanced Model-Based Clustering, Density Estimation, and Discriminant Analysis Software: MCLUST , 2003, J. Classif..

[43]  Joshua M. Stuart,et al.  A Gene-Coexpression Network for Global Discovery of Conserved Genetic Modules , 2003, Science.

[44]  Kathleen Marchal,et al.  Validating module network learning algorithms using simulated data , 2007, BMC Bioinformatics.

[45]  S. Bischof,et al.  In vivo interaction between atToc33 and atToc159 GTP-binding domains demonstrated in a plant split-ubiquitin system. , 2008, Journal of experimental botany.

[46]  Ian M. Donaldson,et al.  BIND: THE BIOMOLECULAR INTERACTION DATABASE , 2001 .

[47]  Xiaoping Zhou,et al.  The Predicted Arabidopsis Interactome Resource and Network Topology-Based Systems Biology Analyses[W][OA] , 2011, Plant Cell.

[48]  P. May,et al.  ChlamyCyc: an integrative systems biology database and web-portal for Chlamydomonas reinhardtii , 2009, BMC Genomics.

[49]  B. André,et al.  K+ channel interactions detected by a genetic system optimized for systematic studies of membrane protein interactions. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[50]  Staffan Persson,et al.  Identification of genes required for cellulose synthesis by regression analysis of public microarray data sets. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[51]  S. C. Lakhotia,et al.  What is a gene? , 1997 .

[52]  A. Varshavsky,et al.  Split ubiquitin as a sensor of protein interactions in vivo. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[53]  E. Grotewold,et al.  ZmMYB31 directly represses maize lignin genes and redirects the phenylpropanoid metabolic flux. , 2010, The Plant journal : for cell and molecular biology.

[54]  William Stafford Noble,et al.  Large-scale identification of yeast integral membrane protein interactions. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[55]  Edward S. Buckler,et al.  Gramene database in 2010: updates and extensions , 2010, Nucleic Acids Res..

[56]  Wolfgang Busch,et al.  Omics meet networks - using systems approaches to infer regulatory networks in plants. , 2010, Current opinion in plant biology.

[57]  Kerstin Kaufmann,et al.  ChIP-seq Analysis in R (CSAR): An R package for the statistical detection of protein-bound genomic regions , 2011, Plant Methods.

[58]  W. Liang,et al.  TM4 microarray software suite. , 2006, Methods in enzymology.

[59]  Susumu Goto,et al.  KEGG for integration and interpretation of large-scale molecular data sets , 2011, Nucleic Acids Res..

[60]  Haiyuan Yu,et al.  Detecting overlapping protein complexes in protein-protein interaction networks , 2012, Nature Methods.

[61]  Raya Khanin,et al.  How Scale-Free Are Biological Networks , 2006, J. Comput. Biol..

[62]  M. Facciotti,et al.  Evaluation of Algorithm Performance in ChIP-Seq Peak Detection , 2010, PloS one.

[63]  Siobhan M Brady,et al.  Systems approaches to identifying gene regulatory networks in plants. , 2008, Annual review of cell and developmental biology.

[64]  Xin Chen,et al.  PAIR: the predicted Arabidopsis interactome resource , 2010, Nucleic Acids Res..

[65]  Hank C Wu,et al.  Development of Arabidopsis whole-genome microarrays and their application to the discovery of binding sites for the TGA2 transcription factor in salicylic acid-treated plants. , 2006, The Plant journal : for cell and molecular biology.

[66]  Dirk Inzé,et al.  Mitochondrial type-I prohibitins of Arabidopsis thaliana are required for supporting proficient meristem development. , 2007, The Plant journal : for cell and molecular biology.

[67]  Doreen Ware,et al.  Enhanced Y1H assays for Arabidopsis , 2011, Nature Methods.

[68]  A. Barabasi,et al.  Interactome Networks and Human Disease , 2011, Cell.

[69]  E. Ruppin,et al.  Reconstruction of Arabidopsis metabolic network models accounting for subcellular compartmentalization and tissue-specificity , 2011, Proceedings of the National Academy of Sciences.

[70]  Erwin P. Gianchandani,et al.  Correction: Dynamic Analysis of Integrated Signaling, Metabolic, and Regulatory Networks , 2008, PLoS Computational Biology.

[71]  Joachim Selbig,et al.  Extension of the Visualization Tool MapMan to Allow Statistical Analysis of Arrays, Display of Coresponding Genes, and Comparison with Known Responses1 , 2005, Plant Physiology.

[72]  Lani F. Wu,et al.  Large-scale prediction of Saccharomyces cerevisiae gene function using overlapping transcriptional clusters , 2002, Nature Genetics.

[73]  J. Timmer,et al.  Photoconversion and Nuclear Trafficking Cycles Determine Phytochrome A's Response Profile to Far-Red Light , 2011, Cell.

[74]  B. Reinhart,et al.  Genome-wide binding-site analysis of REVOLUTA reveals a link between leaf patterning and light-mediated growth responses. , 2012, The Plant journal : for cell and molecular biology.

[75]  P. Más,et al.  Mapping the Core of the Arabidopsis Circadian Clock Defines the Network Structure of the Oscillator , 2012, Science.

[76]  Ann E. Loraine,et al.  The Integrated Genome Browser: free software for distribution and exploration of genome-scale datasets , 2009, Bioinform..

[77]  Ghislain Breton,et al.  A Functional Genomics Approach Reveals CHE as a Component of the Arabidopsis Circadian Clock , 2009, Science.

[78]  Tanya Z. Berardini,et al.  The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools , 2011, Nucleic Acids Res..

[79]  Sailu Yellaboina,et al.  Inferring genome-wide functional linkages in E. coli by combining improved genome context methods: comparison with high-throughput experimental data. , 2007, Genome research.

[80]  B. Causier,et al.  The TOPLESS Interactome: A Framework for Gene Repression in Arabidopsis1[W][OA] , 2011, Plant Physiology.

[81]  E. Marcotte,et al.  Rational association of genes with traits using a genome-scale gene network for Arabidopsis thaliana , 2010, Nature Biotechnology.

[82]  A. Burgard,et al.  Optimization-based framework for inferring and testing hypothesized metabolic objective functions. , 2003, Biotechnology and bioengineering.

[83]  W. Liang,et al.  9) TM4 Microarray Software Suite , 2006 .

[84]  L. Quek,et al.  AraGEM, a Genome-Scale Reconstruction of the Primary Metabolic Network in Arabidopsis1[W] , 2009, Plant Physiology.

[85]  S. Dodsworth A diverse and intricate signalling network regulates stem cell fate in the shoot apical meristem. , 2009, Developmental biology.

[86]  Shujing Liu,et al.  Characterization of MADS-domain transcription factor complexes in Arabidopsis flower development , 2012, Proceedings of the National Academy of Sciences.

[87]  M. S. Mukhtar,et al.  Independently Evolved Virulence Effectors Converge onto Hubs in a Plant Immune System Network , 2011, Science.

[88]  A. Mortazavi,et al.  Computation for ChIP-seq and RNA-seq studies , 2009, Nature Methods.

[89]  Kiana Toufighi,et al.  The Botany Array Resource: E-northerns, Expression Angling, and Promoter Analyses , 2022 .

[90]  Hongyu Zhao,et al.  Analysis of Transcription Factor HY5 Genomic Binding Sites Revealed Its Hierarchical Role in Light Regulation of Development[W] , 2007, The Plant Cell Online.

[91]  Seung Y. Rhee,et al.  Uncovering Arabidopsis Membrane Protein Interactome Enriched in Transporters Using Mating-Based Split Ubiquitin Assays and Classification Models , 2012, Front. Plant Sci..

[92]  G. Bateson,et al.  A systems approach. , 1970, International journal of psychiatry.

[93]  Sorina C. Popescu,et al.  Differential binding of calmodulin-related proteins to their targets revealed through high-density Arabidopsis protein microarrays , 2007, Proceedings of the National Academy of Sciences.

[94]  P. Benfey,et al.  Transcriptional Regulation of ROS Controls Transition from Proliferation to Differentiation in the Root , 2010, Cell.

[95]  Mike Tyers,et al.  BioGRID: a general repository for interaction datasets , 2005, Nucleic Acids Res..

[96]  M. Martin-Magniette,et al.  Genome-scale Arabidopsis promoter array identifies targets of the histone acetyltransferase GCN5. , 2008, The Plant journal : for cell and molecular biology.

[97]  Juan A. Oses-Prieto,et al.  PP2A activates brassinosteroid-responsive gene expression and plant growth by dephosphorylating BZR1 , 2010, Nature Cell Biology.

[98]  Daniel L. Mace,et al.  A High-Resolution Root Spatiotemporal Map Reveals Dominant Expression Patterns , 2007, Science.

[99]  Naohiro Kato,et al.  Luminescence detection of SNARE–SNARE interaction in Arabidopsis protoplasts , 2010, Plant Molecular Biology.

[100]  R. Albert Network Inference, Analysis, and Modeling in Systems Biology , 2007, The Plant Cell Online.

[101]  Eugenia Russinova,et al.  A kaleidoscopic view of the Arabidopsis core cell cycle interactome. , 2011, Trends in plant science.

[102]  S. Dudoit,et al.  Multiple Testing Procedures with Applications to Genomics , 2007 .

[103]  Leonore Reiser,et al.  Using the Arabidopsis Information Resource (TAIR) to Find Information About Arabidopsis Genes , 2005, Current protocols in bioinformatics.

[104]  Adam J. Smith,et al.  The Database of Interacting Proteins: 2004 update , 2004, Nucleic Acids Res..

[105]  Rick L. Stevens,et al.  High-throughput generation, optimization and analysis of genome-scale metabolic models , 2010, Nature Biotechnology.

[106]  O. Fiehn,et al.  Metabolite profiling for plant functional genomics , 2000, Nature Biotechnology.

[107]  Magali Schnell Ramos,et al.  Toward the Storage Metabolome: Profiling the Barley Vacuole1[W][OA] , 2011, Plant Physiology.

[108]  Roeland C. H. J. van Ham,et al.  PRI-CAT: a web-tool for the analysis, storage and visualization of plant ChIP-seq experiments , 2011, Nucleic Acids Res..

[109]  Lloyd W. Sumner,et al.  MedicCyc: a biochemical pathway database for Medicago truncatula , 2007, Bioinform..

[110]  D. Fell,et al.  Getting to grips with the plant metabolic network. , 2008, The Biochemical journal.

[111]  Michael R Sussman,et al.  Quantitative plant phosphoproteomics. , 2011, Current opinion in plant biology.

[112]  I. Meier,et al.  Two Distinct Interacting Classes of Nuclear Envelope–Associated Coiled-Coil Proteins Are Required for the Tissue-Specific Nuclear Envelope Targeting of Arabidopsis RanGAP[W] , 2008, The Plant Cell Online.

[113]  M. Hirai,et al.  Functional Compensation of Primary and Secondary Metabolites by Duplicate Genes in Arabidopsis thaliana , 2010, Molecular biology and evolution.

[114]  Bernhard O. Palsson,et al.  Identification of Genome-Scale Metabolic Network Models Using Experimentally Measured Flux Profiles , 2006, PLoS Comput. Biol..

[115]  D. Inzé,et al.  The DNA replication checkpoint aids survival of plants deficient in the novel replisome factor ETG1 , 2008, The EMBO journal.

[116]  Samantha Vernhettes,et al.  Organization of cellulose synthase complexes involved in primary cell wall synthesis in Arabidopsis thaliana , 2007, Proceedings of the National Academy of Sciences.

[117]  P. Benfey,et al.  Spatiotemporal regulation of cell-cycle genes by SHORTROOT links patterning and growth , 2010, Nature.

[118]  Martin Kuiper,et al.  Extracting expression modules from perturbational gene expression compendia , 2008, BMC Systems Biology.

[119]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[120]  Peter Widmayer,et al.  Genevestigator V3: A Reference Expression Database for the Meta-Analysis of Transcriptomes , 2008, Adv. Bioinformatics.

[121]  P. Benfey,et al.  The protein expression landscape of the Arabidopsis root , 2012, Proceedings of the National Academy of Sciences.

[122]  Peng Li,et al.  Global protein interactome exploration through mining genome-scale data in Arabidopsis thaliana , 2010, BMC Genomics.

[123]  Paul Pavlidis,et al.  “Guilt by Association” Is the Exception Rather Than the Rule in Gene Networks , 2012, PLoS Comput. Biol..

[124]  Eugenia Russinova,et al.  The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE1 Protein Complex Includes BRASSINOSTEROID-INSENSITIVE1[W] , 2006, The Plant Cell Online.

[125]  J. Förster,et al.  In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production. , 2006, Metabolic engineering.

[126]  Yoshiyuki Ogata,et al.  Approaches for extracting practical information from gene co-expression networks in plant biology. , 2007, Plant & cell physiology.

[127]  G. Wilkes Zea mays. , 1978, Science.

[128]  Y. van de Peer,et al.  Dissecting Plant Genomes with the PLAZA Comparative Genomics Platform1[W] , 2011, Plant Physiology.

[129]  L. Hennig,et al.  H3K27me3 Profiling of the Endosperm Implies Exclusion of Polycomb Group Protein Targeting by DNA Methylation , 2010, PLoS genetics.

[130]  E. Marcotte,et al.  Genetic dissection of the biotic stress response using a genome-scale gene network for rice , 2011, Proceedings of the National Academy of Sciences.

[131]  M. Aluru,et al.  A brassinosteroid transcriptional network revealed by genome-wide identification of BESI target genes in Arabidopsis thaliana. , 2011, The Plant journal : for cell and molecular biology.

[132]  Takayuki Tohge,et al.  Metabolomics reveals comprehensive reprogramming involving two independent metabolic responses of Arabidopsis to UV-B light. , 2011, The Plant journal : for cell and molecular biology.

[133]  G. Church,et al.  Analysis of optimality in natural and perturbed metabolic networks , 2002 .

[134]  Erwin P. Gianchandani,et al.  Dynamic Analysis of Integrated Signaling, Metabolic, and Regulatory Networks , 2008, PLoS Comput. Biol..

[135]  Ian M. Donaldson,et al.  BIND: the Biomolecular Interaction Network Database , 2001, Nucleic Acids Res..

[136]  I. Harris Getting to Grips , 2021, Manufacturing Management.

[137]  Margaret L Werry,et al.  Getting to Grips , 1995 .

[138]  Wolfgang Busch,et al.  The bHLH Transcription Factor POPEYE Regulates Response to Iron Deficiency in Arabidopsis Roots[W][OA] , 2010, Plant Cell.

[139]  L. Quek,et al.  C4GEM, a Genome-Scale Metabolic Model to Study C4 Plant Metabolism1[W][OA] , 2010, Plant Physiology.

[140]  Anton J. Enright,et al.  An efficient algorithm for large-scale detection of protein families. , 2002, Nucleic acids research.

[141]  Y. Zhang,et al.  IntAct—open source resource for molecular interaction data , 2006, Nucleic Acids Res..

[142]  Gary D. Bader,et al.  The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function , 2010, Nucleic Acids Res..

[143]  Istvan Ladunga,et al.  An overview of the computational analyses and discovery of transcription factor binding sites. , 2010, Methods in molecular biology.

[144]  B. Usadel,et al.  PlaNet: Combined Sequence and Expression Comparisons across Plant Networks Derived from Seven Species[W][OA] , 2011, Plant Cell.

[145]  M. Hauser,et al.  Interactome of the Plant-specific ESCRT-III Component AtVPS2.2 in Arabidopsis thaliana , 2011, Journal of proteome research.

[146]  Y. Shachar-Hill,et al.  Metabolic flux analysis in plants: coping with complexity. , 2009, Plant, cell & environment.

[147]  Lan V. Zhang,et al.  Evidence for dynamically organized modularity in the yeast protein–protein interaction network , 2004, Nature.

[148]  Sebastian Proost,et al.  Predicting protein-protein interactions in Arabidopsis thaliana through integration of orthology, gene ontology and co-expression , 2009, BMC Genomics.

[149]  V. Rubio,et al.  An alternative tandem affinity purification strategy applied to Arabidopsis protein complex isolation. , 2005, The Plant journal : for cell and molecular biology.

[150]  P. Farnham Insights from genomic profiling of transcription factors , 2009, Nature Reviews Genetics.

[151]  M. S. Mukhtar,et al.  Arabidopsis G-protein interactome reveals connections to cell wall carbohydrates and morphogenesis , 2011, Molecular systems biology.

[152]  C. Maranas,et al.  Zea mays iRS1563: A Comprehensive Genome-Scale Metabolic Reconstruction of Maize Metabolism , 2011, PloS one.

[153]  Joshua L. Heazlewood,et al.  SUBA: the Arabidopsis Subcellular Database , 2006, Nucleic Acids Res..

[154]  Hongkai Ji,et al.  Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. , 2010, Developmental cell.

[155]  Hiroaki Kitano,et al.  Next generation simulation tools: the Systems Biology Workbench and BioSPICE integration. , 2003, Omics : a journal of integrative biology.

[156]  P. Bühlmann,et al.  Sparse graphical Gaussian modeling of the isoprenoid gene network in Arabidopsis thaliana , 2004, Genome Biology.

[157]  Dirk Inzé,et al.  Boosting tandem affinity purification of plant protein complexes. , 2008, Trends in plant science.

[158]  Kengo Kinoshita,et al.  ATTED-II Updates: Condition-Specific Gene Coexpression to Extend Coexpression Analyses and Applications to a Broad Range of Flowering Plants , 2011, Plant & cell physiology.

[159]  A. Bonner,et al.  Genome-wide network model capturing seed germination reveals coordinated regulation of plant cellular phase transitions , 2011, Proceedings of the National Academy of Sciences.

[160]  S. Lee,et al.  Fed‐batch culture of Escherichia coli for L‐valine production based on in silico flux response analysis , 2011, Biotechnology and bioengineering.

[161]  D. Shasha,et al.  A Gene Expression Map of the Arabidopsis Root , 2003, Science.

[162]  Mingzhi Lin,et al.  Computational Identification of Potential Molecular Interactions in Arabidopsis1[C][W] , 2009, Plant Physiology.

[163]  A. Millar,et al.  The clock gene circuit in Arabidopsis includes a repressilator with additional feedback loops , 2012, Molecular systems biology.

[164]  B. Palsson,et al.  A protocol for generating a high-quality genome-scale metabolic reconstruction , 2010 .

[165]  Christophe Godin,et al.  The auxin signalling network translates dynamic input into robust patterning at the shoot apex , 2011, Molecular systems biology.

[166]  E. Marcotte,et al.  Systematic prediction of gene function in Arabidopsis thaliana using a probabilistic functional gene network , 2011, Nature Protocols.

[167]  Jaume Bacardit,et al.  Functional Network Construction in Arabidopsis Using Rule-Based Machine Learning on Large-Scale Data Sets[C][W][OA] , 2011, Plant Cell.

[168]  Sorina C. Popescu,et al.  MAPK target networks in Arabidopsis thaliana revealed using functional protein microarrays. , 2009, Genes & development.

[169]  Guillaume Pilot,et al.  A Membrane Protein/Signaling Protein Interaction Network for Arabidopsis Version AMPv2 , 2010, Front. Physio..

[170]  Hans Meinhardt,et al.  Auxin triggers a genetic switch , 2011, Nature Cell Biology.

[171]  Guang Li,et al.  AtPID: Arabidopsis thaliana protein interactome database—an integrative platform for plant systems biology , 2007, Nucleic Acids Res..

[172]  Erich Grotewold,et al.  Role of the stomatal development regulators FLP/MYB88 in abiotic stress responses. , 2010, The Plant journal : for cell and molecular biology.

[173]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[174]  Martin Kuiper,et al.  Targeted interactomics reveals a complex core cell cycle machinery in Arabidopsis thaliana , 2010, Molecular systems biology.

[175]  P. Karp,et al.  Creation of a Genome-Wide Metabolic Pathway Database for Populus trichocarpa Using a New Approach for Reconstruction and Curation of Metabolic Pathways for Plants1[W][OA] , 2010, Plant Physiology.

[176]  Ioannis Xenarios,et al.  DIP: The Database of Interacting Proteins: 2001 update , 2001, Nucleic Acids Res..

[177]  D. Inzé,et al.  NINJA connects the co-repressor TOPLESS to jasmonate signalling , 2010, Nature.

[178]  Sylvie Lalonde,et al.  Molecular and cellular approaches for the detection of protein-protein interactions: latest techniques and current limitations. , 2008, The Plant journal : for cell and molecular biology.

[179]  Zhongming Zhao,et al.  Construction of a chloroplast protein interaction network and functional mining of photosynthetic proteins in Arabidopsis thaliana , 2008, Cell Research.

[180]  N. Bolduc,et al.  Unraveling the KNOTTED1 regulatory network in maize meristems. , 2012, Genes & development.

[181]  Rongcheng Lin,et al.  Genome-Wide Binding Site Analysis of FAR-RED ELONGATED HYPOCOTYL3 Reveals Its Novel Function in Arabidopsis Development[W] , 2011, Plant Cell.

[182]  Dirk Inzé,et al.  A Novel Aux/IAA28 Signaling Cascade Activates GATA23-Dependent Specification of Lateral Root Founder Cell Identity , 2010, Current Biology.

[183]  Marcelo M. Brandão,et al.  AtPIN: Arabidopsis thaliana Protein Interaction Network , 2009, BMC Bioinformatics.

[184]  M. Vidal,et al.  A gateway-compatible yeast one-hybrid system. , 2004, Genome research.

[185]  Dirk Inzé,et al.  CORNET: A User-Friendly Tool for Data Mining and Integration1[W] , 2010, Plant Physiology.

[186]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[187]  Teva Vernoux,et al.  An Evolutionarily Conserved Mechanism Delimiting SHR Movement Defines a Single Layer of Endodermis in Plants , 2007, Science.

[188]  A. Barabasi,et al.  High-Quality Binary Protein Interaction Map of the Yeast Interactome Network , 2008, Science.

[189]  Gabriele Ausiello,et al.  MINT: the Molecular INTeraction database , 2006, Nucleic Acids Res..