ACLY-β-catenin axis modulates hepatoblastoma cell proliferation.

[1]  Zhiyan Cui,et al.  Anti-leukemic effects of topoisomerase I inhibitors mediated by the De-SUMOylase SENP1. , 2022, Biochimica et biophysica acta. Molecular basis of disease.

[2]  Stephen L. Pinkosky,et al.  Lipogenesis inhibitors: therapeutic opportunities and challenges , 2022, Nature Reviews Drug Discovery.

[3]  Wei Jiang,et al.  The Mutual Inhibition of FoxO1 and SREBP-1c Regulated the Progression of Hepatoblastoma by Regulating Fatty Acid Metabolism , 2021, Mediators of inflammation.

[4]  Azhar Ali,et al.  Fatty Acid Synthase: An Emerging Target in Cancer , 2020, Molecules.

[5]  L. Fournel,et al.  ATP citrate lyase: a central metabolic enzyme in cancer. , 2019, Cancer letters.

[6]  B. Dong,et al.  Wnt/β-catenin signaling as a useful therapeutic target in hepatoblastoma , 2019, Bioscience reports.

[7]  W. Ni,et al.  SUMO‐specific protease 2 (SENP2) suppresses keratinocyte migration by targeting NDR1 for de‐SUMOylation , 2018, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[8]  G. Tiao,et al.  Hepatoblastoma—The Evolution of Biology, Surgery, and Transplantation , 2018, Children.

[9]  J. Marin,et al.  Wnt–β-catenin signalling in liver development, health and disease , 2018, Nature Reviews Gastroenterology & Hepatology.

[10]  X. Fang,et al.  Fatty acid oxidation: An emerging facet of metabolic transformation in cancer. , 2018, Cancer letters.

[11]  M. Yi,et al.  Correction to: Emerging role of lipid metabolism alterations in Cancer stem cells , 2018, Journal of experimental & clinical cancer research : CR.

[12]  Jacquelyn O. Russell,et al.  Wnt/β-Catenin Signaling in Liver Development, Homeostasis, and Pathobiology. , 2018, Annual review of pathology.

[13]  J. Tao,et al.  Novel Advances in Understanding of Molecular Pathogenesis of Hepatoblastoma: A Wnt/β-Catenin Perspective. , 2017, Gene expression.

[14]  D. Aronson,et al.  Malignant tumors of the liver in children. , 2016, Seminars in pediatric surgery.

[15]  A. Kunnumakkara,et al.  ATP citrate lyase (ACLY): a promising target for cancer prevention and treatment. , 2015, Current drug targets.

[16]  H. Jang,et al.  ATP‐citrate lyase regulates cellular senescence via an AMPK‐ and p53‐dependent pathway , 2015, The FEBS journal.

[17]  Mahendra Kumar,et al.  Hepatoblastoma—a Rare Liver Tumor with Review of Literature , 2014, Journal of Gastrointestinal Cancer.

[18]  L. Ellis,et al.  ATP Citrate Lyase Mediates Resistance of Colorectal Cancer Cells to SN38 , 2013, Molecular Cancer Therapeutics.

[19]  Y. Xiong,et al.  Acetylation stabilizes ATP-citrate lyase to promote lipid biosynthesis and tumor growth. , 2013, Molecular cell.

[20]  J. Swinnen,et al.  ATP-citrate lyase: a key player in cancer metabolism. , 2012, Cancer research.

[21]  Chi V. Dang,et al.  Otto Warburg's contributions to current concepts of cancer metabolism , 2011, Nature Reviews Cancer.

[22]  I. Pollack,et al.  Identification of ATP citrate lyase as a positive regulator of glycolytic function in glioblastomas , 2009, International journal of cancer.

[23]  Justin R. Cross,et al.  ATP-Citrate Lyase Links Cellular Metabolism to Histone Acetylation , 2009, Science.

[24]  Y. Ishikawa,et al.  ATP citrate lyase: activation and therapeutic implications in non-small cell lung cancer. , 2008, Cancer research.

[25]  J. Menéndez,et al.  Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis , 2007, Nature Reviews Cancer.

[26]  M. Matuszewski,et al.  Increased activity of glycerol 3-phosphate dehydrogenase and other lipogenic enzymes in human bladder cancer. , 2003, Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme.

[27]  신동훈,et al.  성인에서 발생한 Hepatoblastoma , 1999 .