The partition of unity quadrature in meshless methods

SUMMARY In dealing with mesh-free formulations a major problem is connected to the computation of the quadra- tures appearing in the variational principle related to the dierential boundary value problem. These integrals require, in the standard approach, the introduction of background quadrature subcells which somehow make these methods not 'truly meshless'. In this paper a new general method for computing denite integrals over arbitrary bounded domains is proposed, and it is applied in particular to the evaluation of the discrete weak form of the equilibrium equations in the framework of an augmented Lagrangian element-free formulation. The approach is based on splitting the integrals over the entire domain into the sum of integrals over weight function supports without modifying in any way the variational principle or requiring background quadrature cells. The accuracy and computational cost of the technique compared to standard Gauss subcells quadrature are discussed. Copyright ? 2002 John Wiley & Sons, Ltd.

[1]  Satya N. Atluri,et al.  New concepts in meshless methods , 2000 .

[2]  Mark A Fleming,et al.  Meshless methods: An overview and recent developments , 1996 .

[3]  H. Engels,et al.  Numerical Quadrature and Cubature , 1980 .

[4]  S. Atluri,et al.  A new Meshless Local Petrov-Galerkin (MLPG) approach in computational mechanics , 1998 .

[5]  G. Ventura,et al.  Material and crack discontinuities: application of an element free augmented lagrangian method , 1998 .

[6]  A. Stroud Approximate calculation of multiple integrals , 1973 .

[7]  G. Ventura An augmented Lagrangian approach to essential boundary conditions in meshless methods , 2002 .

[8]  G. Ventura,et al.  A complementary energy formulation of no tension masonry-like solids , 2000 .

[9]  H. Kitamura BookThe emerging Japanese superstate: Challenge and response: by Herman Kahn 274 pages. $7.95. Prentice-Hall, Inc, Englewood Cliffs, NJ , 1971 .

[10]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[11]  T. Belytschko,et al.  Nodal integration of the element-free Galerkin method , 1996 .

[12]  Dimitri P. Bertsekas,et al.  Constrained Optimization and Lagrange Multiplier Methods , 1982 .

[13]  R. Fletcher Practical Methods of Optimization , 1988 .

[14]  Ivo Babuška,et al.  Approximation with harmonic and generalized harmonic polynomials in the partition of unity method , 1997 .

[15]  Ted Belytschko,et al.  Numerical integration of the Galerkin weak form in meshfree methods , 1999 .

[16]  G. Ventura,et al.  An augmented Lagrangian element-free (ALEF) approach for crack discontinuities , 2001 .

[17]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[18]  Jiun-Shyan Chen,et al.  A stabilized conforming nodal integration for Galerkin mesh-free methods , 2001 .

[19]  S. Timoshenko,et al.  Theory of Elasticity (3rd ed.) , 1970 .