Electrostatics of nanosystems: Application to microtubules and the ribosome

Evaluation of the electrostatic properties of biomolecules has become a standard practice in molecular biophysics. Foremost among the models used to elucidate the electrostatic potential is the Poisson-Boltzmann equation; however, existing methods for solving this equation have limited the scope of accurate electrostatic calculations to relatively small biomolecular systems. Here we present the application of numerical methods to enable the trivially parallel solution of the Poisson-Boltzmann equation for supramolecular structures that are orders of magnitude larger in size. As a demonstration of this methodology, electrostatic potentials have been calculated for large microtubule and ribosome structures. The results point to the likely role of electrostatics in a variety of activities of these structures.

[1]  S. Ochoa,et al.  Peptide synthesis by prokaryotic-eukaryotic hybrid ribosomes. , 1972, The Journal of biological chemistry.

[2]  M. Boublik,et al.  Structure of functional A salina -- E coli hybrid ribosome by electron microscopy. , 1979, Journal of supramolecular structure.

[3]  R. Zauhar,et al.  The rigorous computation of the molecular electric potential , 1988 .

[4]  E. Salmon,et al.  Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants and transition frequencies , 1988, The Journal of cell biology.

[5]  K. Sharp,et al.  Calculating the electrostatic potential of molecules in solution: Method and error assessment , 1988 .

[6]  J. A. McCammon,et al.  Solving the finite difference linearized Poisson‐Boltzmann equation: A comparison of relaxation and conjugate gradient methods , 1989 .

[7]  AC Tose Cell , 1993, Cell.

[8]  H. Zhou,et al.  Boundary element solution of macromolecular electrostatics: interaction energy between two proteins. , 1993, Biophysical journal.

[9]  Ray S. Tuminaro,et al.  Analysis of the Multigrid FMV Cycle on Large-Scale Parallel Machines , 1993, SIAM J. Sci. Comput..

[10]  Faisal Saied,et al.  Multigrid and Domain Decomposition Methods for Electrostatics Problems , 1993 .

[11]  Eric F. van de Velde,et al.  Concurrent scientific computing , 1994, Texts in applied mathematics.

[12]  Michael J. Holst,et al.  Numerical solution of the nonlinear Poisson–Boltzmann equation: Developing more robust and efficient methods , 1995, J. Comput. Chem..

[13]  B. Honig,et al.  Classical electrostatics in biology and chemistry. , 1995, Science.

[14]  H. Noller,et al.  A base pair between tRNA and 23S rRNA in the peptidyl transferase centre of the ribosome , 1995, Nature.

[15]  J. Andrew McCammon,et al.  Parallelization of Poisson—Boltzmann and Brownian Dynamics Calculations , 1995 .

[16]  T. Fojo,et al.  Paclitaxel-resistant Human Ovarian Cancer Cells Have Mutant β-Tubulins That Exhibit Impaired Paclitaxel-driven Polymerization* , 1997, The Journal of Biological Chemistry.

[17]  Richard A. Friesner,et al.  Numerical solution of the Poisson–Boltzmann equation using tetrahedral finite‐element meshes , 1997 .

[18]  H. Scheraga,et al.  A fast adaptive multigrid boundary element method for macromolecular electrostatic computations in a solvent , 1997 .

[19]  J A McCammon,et al.  Computer simulations of actin polymerization can explain the barbed-pointed end asymmetry. , 1999, Journal of molecular biology.

[20]  H. Noller,et al.  Identification of an RNA-protein bridge spanning the ribosomal subunit interface. , 1999, Science.

[21]  T. Earnest,et al.  X-ray crystal structures of 70S ribosome functional complexes. , 1999, Science.

[22]  J A McCammon,et al.  Computer simulation of protein-protein association kinetics: acetylcholinesterase-fasciculin. , 1999, Journal of molecular biology.

[23]  E. Nogales,et al.  High-Resolution Model of the Microtubule , 1999, Cell.

[24]  Nathan A. Baker,et al.  Adaptive multilevel finite element solution of the Poisson–Boltzmann equation II. Refinement at solvent‐accessible surfaces in biomolecular systems , 2000 .

[25]  V. Ramakrishnan,et al.  Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics , 2000, Nature.

[26]  T. Steitz,et al.  The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. , 2000, Science.

[27]  F. Schluenzen,et al.  Structure of Functionally Activated Small Ribosomal Subunit at 3.3 Å Resolution , 2000, Cell.

[28]  T. Steitz,et al.  The structural basis of ribosome activity in peptide bond synthesis. , 2000, Science.

[29]  C. Vonrhein,et al.  Structure of the 30S ribosomal subunit , 2000, Nature.

[30]  Nathan A. Baker,et al.  Adaptive multilevel finite element solution of the Poisson–Boltzmann equation I. Algorithms and examples , 2000 .

[31]  A. Elcock,et al.  Computer Simulation of Protein−Protein Interactions , 2001 .

[32]  Michael J. Holst,et al.  The adaptive multilevel finite element solution of the Poisson-Boltzmann equation on massively parallel computers , 2001, IBM J. Res. Dev..

[33]  Michael J. Holst,et al.  Adaptive Numerical Treatment of Elliptic Systems on Manifolds , 2001, Adv. Comput. Math..