First principles study of the multiferroics BiFeO3, Bi2FeCrO6, and BiCrO3 : Structure, polarization, and magnetic ordering temperature

We present results of an ab initio density-functional theory study of three bismuth-based multiferroics, BiFeO3 ,B i 2FeCrO6, and BiCrO3. We disuss differences in the crystal and electronic structure of the three systems and show that the application of the LDA+U method is essential to obtain realistic structural parameters for Bi2FeCrO6. We calculate the magnetic nearest-neighbor coupling constants for all three systems and show how Anderson’s theory of superexchange can be applied to explain the signs and relative magnitudes of these coupling constants. From the coupling constants we then obtain a mean-field approximation for the magnetic ordering temperatures. Guided by our comparison of these three systems, we discuss the possibilities for designing a multiferroic material with large magnetization above room temperature.

[1]  Robert Gerson,et al.  The atomic structure of BiFeO3 , 1969 .

[2]  Karin M. Rabe,et al.  FIRST-PRINCIPLES INVESTIGATION OF FERROMAGNETISM AND FERROELECTRICITY IN BISMUTH MANGANITE , 1999 .

[3]  Nicola A. Spaldin,et al.  Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite , 2005 .

[4]  Kiyoyuki Terakura,et al.  Band theory of insulating transition-metal monoxides: Band-structure calculations , 1984 .

[5]  O. Andersen Simple approach to the band-structure problem , 1973 .

[6]  C. Daul,et al.  First Principles Search for Multiferroism in BiCrO3 , 2002 .

[7]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[8]  W. Butler,et al.  Effect of electron correlations on the electronic and magnetic structure of Ti-doped α-hematite , 2004 .

[9]  M. Alouani,et al.  LDA+U calculated electronic and structural properties of NiO(001) and NiO(111) p(2×2) surfaces , 2002 .

[10]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[11]  Unusual structural tuning of magnetism in cuprate perovskites , 2004, cond-mat/0407677.

[12]  I. Solovyev,et al.  Electronic structure and stability of the ferrimagnetic ordering in double perovskites , 2002 .

[13]  U. V. Waghmare,et al.  First-principles study of spontaneous polarization in multiferroic BiFeO 3 , 2005 .

[14]  S. Akimoto,et al.  Crystal chemistry of MSeO3 and MTeO3 (M = Mg, Mn, Co, Ni, Cu, and Zn) , 1976 .

[15]  L. E. Cross,et al.  Destruction of spin cycloid in (111)c-oriented BiFeO3 thin films by epitiaxial constraint: Enhanced polarization and release of latent magnetization , 2005 .

[16]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[17]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[18]  Robert Gerson,et al.  Dielectric hysteresis in single crystal BiFeO3 , 1970 .

[19]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[20]  D. Treves,et al.  Studies on Orthoferrites at the Weizmann Institute of Science , 1965 .

[21]  D. Vanderbilt,et al.  Electric polarization as a bulk quantity and its relation to surface charge. , 1993, Physical review. B, Condensed matter.

[22]  M. Sakata,et al.  Crystal structure and dielectric and magnetic properties of BiCrO3 as a ferroelectromagnet , 2004 .

[23]  Ram Seshadri,et al.  Visualizing the Role of Bi 6s “Lone Pairs” in the Off-Center Distortion in Ferromagnetic BiMnO3 , 2001 .

[24]  N. Spaldin,et al.  Ab initio prediction of a multiferroic with large polarization and magnetization , 2004, cond-mat/0410268.

[25]  R. Eitel,et al.  Lanthanum-Modified (1 – x)(Bi0.8La0.2)(Ga0.05Fe0.95)O3·xPbTiO3 Crystalline Solutions: Novel Morphotropic Phase-Boundary Lead-Reduced Piezoelectrics , 2003 .

[26]  E Steichele,et al.  Spiral magnetic ordering in bismuth ferrite , 1982 .

[27]  J. Rusz,et al.  Exchange interactions in barium hexaferrite , 2005 .

[28]  A. P. Ramirez,et al.  STRUCTURAL TUNING OF FERROMAGNETISM IN A 3D CUPRATE PEROVSKITE , 1999 .

[29]  H. Schmid,et al.  Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO3 , 1990 .

[30]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[31]  R. L. Weber,et al.  The Physical Principles of Magnetism , 1967 .

[32]  John B. Goodenough,et al.  Magnetism and the chemical bond , 1963 .

[33]  Nicola A. Spaldin,et al.  Theoretical Prediction of New High-Performance Lead-Free Piezoelectrics , 2005 .

[34]  Ueda,et al.  Ferromagnetism in LaFeO3-LaCrO3 superlattices , 1998, Science.

[35]  K. Terakura,et al.  Electronic and magnetic properties of La 2 FeCrO 6 : Superexchange interaction for a d 5 -d 3 system , 2001 .

[36]  D. Vanderbilt,et al.  Theory of polarization of crystalline solids. , 1993, Physical review. B, Condensed matter.

[37]  R. Ramesh,et al.  Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures , 2003, Science.

[38]  A. Lichtenstein,et al.  First-principles calculations of electronic structure and spectra of strongly correlated systems: the LDA+U method , 1997 .