The Mass Attenuation Coefficients and Effective Atomic Numbers of Y-Based Superconductors in Energy Range 220 keV to 662 keV

The mass attenuation coefficients and effective atomic numbers of the new Y-based superconductors have been studied in the energy range of 220  662 keV. The variation of photon energy has been changed from Cs-137 (662 keV) by Compton scattering technique. The mass attenuation coefficients of Y-based superconductors decreased with increasing of photon energy and do not show the significantly different compared with all Y-based superconductors. Incoherent scattering is main interaction process when photon penetration to Y-based superconductors. The effective atomic numbers and electron densities show the same trend and its depend on Y, Ba and Cu content in Y-based superconductors.

[1]  C. Chu,et al.  Superconductivity at 93 K in a New Mixed-Phase Y-Ba-Cu-O Compound System at Ambient Pressure , 2018, Peking University-World Scientific Advanced Physics Series.

[2]  S. Kutuk,et al.  An investigation of magnetoresistivity properties of an Y3Ba5Cu8Oy bulk superconductor , 2015 .

[3]  N. M. Badiger,et al.  Determination of mass attenuation coefficient for some polymers using Monte Carlo simulation , 2015 .

[4]  S. Funaki,et al.  Phase control and growth of Y123 and Y124 crystals below 600 °C by molten KOH flux , 2015 .

[5]  K. S. Mann,et al.  Shielding behaviors of some polymer and plastic materials for gamma-rays , 2015 .

[6]  P. Limkitjaroenporn,et al.  Gamma-rays attenuation of zircons from Cambodia and South Africa at different energies: A new technique for identifying the origin of gemstone , 2014 .

[7]  S. Kaur,et al.  Comparative study of gamma ray shielding and some properties of PbO–SiO2–Al2O3 and Bi2O3–SiO2–Al2O3 glass systems , 2014 .

[8]  N. M. Badiger,et al.  Gamma ray and neutron shielding properties of some alloy materials , 2014 .

[9]  F. Demir,et al.  Determination of mass attenuation coefficients, effective atomic numbers and effective electron numbers for heavy-weight and normal-weight concretes. , 2013, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine.

[10]  P. Limkitjaroenporn,et al.  Determination of mass attenuation coefficients and effective atomic numbers for Inconel 738 alloy for different energies obtained from Compton scattering , 2013 .

[11]  F N Werfel,et al.  Large-scale HTS bulks for magnetic application , 2013 .

[12]  Mohammad Hassan Kharita,et al.  Shielding properties of lead and barium phosphate glasses , 2012 .

[13]  I. Akkurt,et al.  Photon attenuation coefficients of concrete including marble aggregates , 2012 .

[14]  I. Akkurt,et al.  Chemical corrosion on gamma-ray attenuation properties of barite concrete , 2012 .

[15]  P. Limsuwan,et al.  Effect of BaO on Optical, Physical and Radiation Shielding Properties of SiO2-B2O3-Al2O3-CaO-Na2O Glasses System , 2012 .

[16]  T. Tsuchiya,et al.  Effect of magnetic particle additions on flux pinning in bulk Y-Ba-Cu-O superconductors , 2012 .

[17]  P. Limsuwan,et al.  Mass Attenuation Coefficient and Effective Atomic Number of Ag/Cu/Zn Alloy at Different Photon Energy by Compton Scattering Technique , 2012 .

[18]  P. Udomsamuthirun,et al.  XRD spectra of new YBaCuO superconductors , 2011 .

[19]  P. Limsuwan,et al.  Comparative study of silicate glasses containing Bi2O3, PbO and BaO: Radiation shielding and optical properties , 2011 .

[20]  P. Limsuwan,et al.  Physical, optical, structural and gamma-ray shielding properties of lead sodium borate glasses , 2011 .

[21]  T. Korkut,et al.  A new radiation shielding material: Amethyst ore , 2011 .

[22]  P. Udomsamuthirun,et al.  The New Superconductors of YBaCuO Materials , 2010 .

[23]  M. Akhavan,et al.  How Tc can go above 100 K in the YBCO family , 2010 .

[24]  R. Hu,et al.  Novel configuration of processing bulk textured YB2Cu3O7−x superconductor by seeded infiltration growth method , 2010 .

[25]  A. Aliabadi,et al.  A new Y-based HTSC with Tc above 100 K , 2009 .

[26]  K. Kishio,et al.  True effects of microstructure and oxygen contents on flux-pinning properties of Y123 melt-solidified bulks , 2008 .

[27]  W. Chewpraditkul,et al.  Determination of effective atomic numbers and effective electron densities for Cu/Zn alloy , 2008 .

[28]  B. Dabrowski,et al.  Increase of critical currents in chemically substituted Y123 , 2007 .

[29]  H. Baltas,et al.  Measurement of the mass attenuation coefficients and electron densities for BiPbSrCaCuO superconductor at different energies , 2007 .

[30]  E. Yanmaz,et al.  Measurement of mass attenuation coefficients and effective atomic numbers for MgB2 superconductor using X-ray energies , 2007 .

[31]  H. Miyata,et al.  Bending mechanical properties of a single-grain Y123 bulk superconductor at liquid nitrogen temperature , 2006 .

[32]  S. Nariki,et al.  Barium cerate as effective flux pinning centers in Y123 bulk materials , 2005 .

[33]  U. Çevik,et al.  Mass attenuation coefficients of YBaCuO and BiPbSrCaCuO superconductors at 511, 661 and energies , 2005 .

[34]  L. Gerward,et al.  WinXCom – a program for calculating x-ray attenuation coefficients , 2004 .

[35]  Ryoichi Takahata,et al.  Progress of superconducting bearing technologies for flywheel energy storage systems , 2003 .

[36]  Y. C. Kim,et al.  Design a hybrid high Tc superconductor bearings for flywheel energy storage system , 2002 .

[37]  Vishal Sharma,et al.  Gamma-ray attenuation coefficients in bismuth borate glasses , 2002 .

[38]  L. Gerward,et al.  X-ray absorption in matter. Reengineering XCOM , 2001 .

[39]  J. Graham-Pole,et al.  Physical , 1998, The Lancet.

[40]  H. Rietveld A profile refinement method for nuclear and magnetic structures , 1969 .

[41]  B. Nordfors THE STATISTICAL ERROR IN X-RAY ABSORPTION MEASUREMENTS , 1960 .