Evaluating the spectroradiometric performance of an uncooled midwave infrared hyperspectral interferometer using a microbolometer array detector

Abstract. Improved technology and emerging interferometric techniques have allowed the use of uncooled microbolometers in the long-wave infrared (LWIR; 8 to 14  μm) for hyperspectral imaging (HSI). The midwave infrared (MWIR; 3 to 5  μm) presents several advantages with respect to the LWIR for Earth and planetary science. For example, important atmospheric trace gases on Earth such as CO2 and CH4 are not masked by other atmospheric constituents in the MWIR. However, HSI in the MWIR is more challenging at ambient Earth temperatures because less radiance is available to measure. We describe how hyperspectral images in the MWIR can be acquired with an instrument using an uncooled microbolometer married to a Sagnac interferometer. Standard characterization tests are used to benchmark the performance of the microbolometer instrument with a cryogenically cooled photon detector with the same optical design. At a spectral resolution of 100  cm  −  1 (17 bands between 3 and 5  μm), we measured a signal-to-noise ratio (SNR) of 100 at 30°C with the microbolometer instrument and an SNR of 50 at 50  cm  −  1 (33 bands). Results from this work show that coupling microbolometers with interferometers allows for quality measurements with adequate SNR for high-temperature science applications.

[1]  Paul G. Lucey,et al.  Mini-SMIFTS: an uncooled LWIR hyperspectral sensor , 2004, SPIE Optics + Photonics.

[2]  C. Oppenheimer,et al.  Lava lake surface characterization by thermal imaging: Erta 'Ale volcano (Ethiopia) , 2008 .

[3]  Stefano Pignatti,et al.  An advanced tool of the CNR IMAA EO facilities: Overview of the TASI-600 hyperspectral thermal spectrometer , 2011, 2011 3rd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS).

[4]  Paul G. Lucey,et al.  The Miniaturized Infrared Detector of Atmospheric Species (MIDAS) a low-mass, MWIR low-power hyperspectral imager , 2016, SPIE Defense + Security.

[5]  Francois Alain,et al.  Simulation of imaging Fourier transform spectrometers using DIRSIG , 1999 .

[6]  Thomas E. Wolverton,et al.  Miniature Thermal Emission Spectrometer for the Mars Exploration Rovers , 2003 .

[7]  Tsehaie Woldai,et al.  Multi- and hyperspectral geologic remote sensing: A review , 2012, Int. J. Appl. Earth Obs. Geoinformation.

[8]  R. Wright,et al.  Characterization and initial field test of an 8–14 μm thermal infrared hyperspectral imager for measuring SO2 in volcanic plumes , 2016, Bulletin of Volcanology.

[9]  R. Glenn Sellar,et al.  The high efficiency hyperspectral imager - A new instrument for measurements of the arctic surface , 2005 .

[10]  Bruce Rafert,et al.  Hyperspectral imaging Fourier transform spectrometers for astronomical and remote sensing observations , 1994, Astronomical Telescopes and Instrumentation.

[11]  Wm. Hayden Smith,et al.  Digital array scanned interferometers for astronomy , 1990 .

[12]  Antoni Rogalski,et al.  Next decade in infrared detectors , 2017, Security + Defence.

[13]  K. Ajay Kumar,et al.  Advances in Spaceborne Hyperspectral Imaging Systems , 2015 .

[14]  S Kawata,et al.  Fourier transform spectrometer with a self-scanning photodiode array. , 1984, Applied optics.

[15]  I. Renhorn,et al.  Military applications of hyperspectral imagery , 2006, SPIE Defense + Commercial Sensing.

[16]  W H Smith,et al.  Digital array scanned interferometer: sensors and results. , 1996, Applied optics.

[17]  P. Cassen,et al.  Melting of Io by Tidal Dissipation , 1979, Science.

[18]  T. Hashimoto,et al.  Volcanic plume measurements using a UAV for the 2014 Mt. Ontake eruption , 2016, Earth, Planets and Space.

[19]  Bruce Rafert,et al.  SMIFTS: a cryogenically cooled, spatially modulated imaging infrared interferometer spectrometer , 1993, Defense, Security, and Sensing.

[20]  Paul G. Lucey,et al.  Volcanic gas measurements using a compact mid-wave infrared hyperspectral imager , 2018, Asia-Pacific Remote Sensing.

[21]  M. Patrick,et al.  Lava lake activity at the summit of Kīlauea Volcano in 2016 , 2018 .

[22]  Paul G. Lucey,et al.  A low cost thermal infrared hyperspectral imager for small satellites , 2011, Defense + Commercial Sensing.

[23]  M. Wooster,et al.  Fire radiative energy for quantitative study of biomass burning: derivation from the BIRD experimental satellite and comparison to MODIS fire products. , 2003 .

[24]  R. Glenn Sellar,et al.  Limiting aspect ratios of Sagnac interferometers , 2003 .

[25]  Paul G. Lucey,et al.  A compact LWIR hyperspectral system employing a microbolometer array and a variable gap Fabry-Perot interferometer employed as a Fourier transform spectrometer , 2012, Defense + Commercial Sensing.

[26]  Richard F. Horton,et al.  Optical design for a high-etendue imaging Fourier-transform spectrometer , 1996, Optics & Photonics.

[27]  Paul W. Kruse,et al.  Uncooled Thermal Imaging Arrays, Systems, and Applications , 2001 .

[28]  R. Howell Thermal Emission from Lava Flows on Io , 1997 .

[29]  V. E. Hamilton,et al.  The OSIRIS-REx Thermal Emission Spectrometer (OTES) Instrument , 2018, Space Science Reviews.

[30]  G. Villanueva,et al.  A search for SO2, H2S and SO above Tharsis and Syrtis volcanic districts on Mars using ground-based high-resolution submillimeter spectroscopy , 2015 .

[31]  J. Rinker Hyperspectral Imagery: A New Technique for Targeting and Intelligence , 1990 .

[32]  John R. Schott,et al.  Remote Sensing: The Image Chain Approach , 1996 .

[33]  D. L. Anderson,et al.  Thermal emission spectrometer experiment: Mars Observer mission , 1992 .

[34]  Ira Leifer,et al.  High resolution mapping of methane emissions from marine and terrestrial sources using a Cluster-Tuned Matched Filter technique and imaging spectrometry , 2013 .

[35]  A F Goetz,et al.  Imaging Spectrometry for Earth Remote Sensing , 1985, Science.

[36]  W. Calvin,et al.  SEBASS hyperspectral thermal infrared data: surface emissivity measurement and mineral mapping , 2003 .

[37]  Paul G. Lucey,et al.  MWIR hyperspectral imaging with the MIDAS instrument , 2017, Defense + Security.

[38]  A. Rogalski Infrared detectors: an overview , 2002 .

[39]  Paul G. Lucey,et al.  TIRCIS: thermal infrared compact imaging spectrometer for small satellite applications , 2016, Asia-Pacific Remote Sensing.

[40]  Mark Wood,et al.  Design and operation of SUCHI: the space ultra-compact hyperspectral imager for a small satellite , 2014, Defense + Security Symposium.

[41]  Raymond E. Arvidson,et al.  Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO) , 2007 .

[42]  G. Villanueva,et al.  A deep search for the release of volcanic gases on Mars using ground-based high-resolution infrared and submillimeter spectroscopy: Sensitive upper limits for OCS and SO2 , 2017 .

[43]  A. Barducci,et al.  Theoretical aspects of Fourier Transform Spectrometry and common path triangular interferometers. , 2010, Optics express.

[44]  Paul G. Lucey,et al.  Spectral response of microbolometers for hyperspectral imaging , 2017, Defense + Security.

[45]  E. R. Polovtseva,et al.  The HITRAN2012 molecular spectroscopic database , 2013 .

[46]  Massimo Zucchetti,et al.  A survey of landmine detection using hyperspectral imaging , 2017 .

[47]  Alpana Shukla,et al.  An Overview of Hyperspectral Remote Sensing and its applications in various Disciplines , 2016 .

[48]  G. Duxbury Fourier transform infrared spectroscopy , 1978, Nature.

[49]  A. J. Sutton,et al.  One hundred volatile years of volcanic gas studies at the Hawaiian Volcano Observatory: Chapter 7 in Characteristics of Hawaiian volcanoes , 2014 .

[50]  Tim Williams,et al.  Performance of a long-wave infrared hyperspectral imager using a Sagnac interferometer and an uncooled microbolometer array. , 2008, Applied optics.

[51]  Pierre Defourny,et al.  Survey of Hyperspectral Earth Observation Applications from Space in the Sentinel-2 Context , 2018, Remote. Sens..