暂无分享,去创建一个
James H. Davenport | G. K. Sankaran | A. F. Locatelli | J. Davenport | G. Sankaran | Acyr F. Locatelli | Gregory K. Sankaran
[1] R. Ho. Algebraic Topology , 2022 .
[2] Tsuyoshi Murata,et al. {m , 1934, ACML.
[3] J. Schwartz,et al. On the “piano movers” problem. II. General techniques for computing topological properties of real algebraic manifolds , 1983 .
[4] S. Basu,et al. Algorithms in real algebraic geometry , 2003 .
[5] Stephen Smale,et al. A Vietoris mapping theorem for homotopy , 1957 .
[6] Matthew England,et al. Truth table invariant cylindrical algebraic decomposition , 2014, J. Symb. Comput..
[7] J. T. Shwartz,et al. On the Piano Movers' Problem : III , 1983 .
[8] Christopher W. Brown. Open Non-uniform Cylindrical Algebraic Decompositions , 2015, ISSAC.
[9] John Milnor,et al. On spaces having the homotopy type of a CW-complex , 1959 .
[10] Acyr Locatelli,et al. On the regularity of cylindrical algebraic decompositions , 2015 .
[11] Daniel Lazard. CAD and Topology of Semi-Algebraic Sets , 2010, Math. Comput. Sci..
[13] Saugata Basu,et al. Triangulations of monotone families I: two-dimensional families , 2015 .
[14] Scott McCallum,et al. On projection in CAD-based quantifier elimination with equational constraint , 1999, ISSAC '99.
[15] Mady Demdah Kartoue. h-cobordism and s-cobordism Theorems: Transfer over Semialgebraic and Nash Categories, Uniform bound and Effectiveness , 2011 .
[16] A. Dold. Lectures on Algebraic Topology , 1972 .
[17] Hidenao Iwane,et al. Real Quantifier Elimination by Computation of Comprehensive Gröbner Systems , 2015, ISSAC.
[18] Marie-Françoise Roy,et al. Real algebraic geometry , 1992 .
[19] George E. Collins,et al. Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975 .
[20] Saugata Basu,et al. Semi-monotone sets , 2010, 1004.5047.
[21] Changbo Chen,et al. Cylindrical Algebraic Decomposition in the RegularChains Library , 2014, ICMS.