Minimized surface deficiency on wide-bandgap perovskite for efficient indoor photovoltaics

[1]  Yi-Shiuan Wu,et al.  Vacuum‐Deposited Transparent Organic Photovoltaics for Efficiently Harvesting Selective Ultraviolet and Near‐Infrared Solar Energy , 2020, Solar RRL.

[2]  A. Jen,et al.  Modulation of Defects and Interfaces through Alkylammonium Interlayer for Efficient Inverted Perovskite Solar Cells , 2020 .

[3]  Zhengshan J. Yu,et al.  Triple-halide wide–band gap perovskites with suppressed phase segregation for efficient tandems , 2020, Science.

[4]  Hang Yin,et al.  From 33% to 57% – an elevated potential of efficiency limit for indoor photovoltaics , 2020 .

[5]  A. Jen,et al.  Highly efficient all-inorganic perovskite solar cells with suppressed non-radiative recombination by a Lewis base , 2020, Nature Communications.

[6]  Ken-Tsung Wong,et al.  Device characteristics and material developments of indoor photovoltaic devices , 2020 .

[7]  A. Jen,et al.  A 0D/3D Heterostructured All‐Inorganic Halide Perovskite Solar Cell with High Performance and Enhanced Phase Stability , 2019, Advanced materials.

[8]  A. Jen,et al.  A Dopant‐Free Polymeric Hole‐Transporting Material Enabled High Fill Factor Over 81% for Highly Efficient Perovskite Solar Cells , 2019, Advanced Energy Materials.

[9]  O. Inganäs,et al.  Wide-gap non-fullerene acceptor enabling high-performance organic photovoltaic cells for indoor applications , 2019, Nature Energy.

[10]  Rahul Bhattacharyya,et al.  Self‐Powered Sensors Enabled by Wide‐Bandgap Perovskite Indoor Photovoltaic Cells , 2019, Advanced Functional Materials.

[11]  Xun Xiao,et al.  Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts , 2019, Science.

[12]  G. Fang,et al.  Achieving a high open-circuit voltage in inverted wide-bandgap perovskite solar cells with a graded perovskite homojunction , 2019, Nano Energy.

[13]  A. Jen,et al.  Efficient large guanidinium mixed perovskite solar cells with enhanced photovoltage and low energy losses. , 2019, Chemical communications.

[14]  Jinsong Huang,et al.  Tailoring Passivation Molecular Structures for Extremely Small Open-Circuit Voltage Loss in Perovskite Solar Cells. , 2019, Journal of the American Chemical Society.

[15]  Pengwan Chen,et al.  Strain engineering in perovskite solar cells and its impacts on carrier dynamics , 2019, Nature Communications.

[16]  Ian Marius Peters,et al.  Technology and Market Perspective for Indoor Photovoltaic Cells , 2019, Joule.

[17]  Matthew J. Carnie,et al.  Outstanding Indoor Performance of Perovskite Photovoltaic Cells - Effect of Device Architectures and Interlayers , 2018, Solar RRL.

[18]  Fang‐Chung Chen Emerging Organic and Organic/Inorganic Hybrid Photovoltaic Devices for Specialty Applications: Low‐Level‐Lighting Energy Conversion and Biomedical Treatment , 2018, Advanced Optical Materials.

[19]  Rui Zhu,et al.  Enhanced photovoltage for inverted planar heterojunction perovskite solar cells , 2018, Science.

[20]  A. Jen,et al.  Toward Perovskite Solar Cell Commercialization: A Perspective and Research Roadmap Based on Interfacial Engineering , 2018, Advanced materials.

[21]  Luis M. Pazos-Outón,et al.  Hybrid perovskite films approaching the radiative limit with over 90% photoluminescence quantum efficiency , 2018 .

[22]  Peter Hacke,et al.  Enabling reliability assessments of pre-commercial perovskite photovoltaics with lessons learned from industrial standards , 2018, Nature Energy.

[23]  Hang Yin,et al.  Designing a ternary photovoltaic cell for indoor light harvesting with a power conversion efficiency exceeding 20 , 2018 .

[24]  A. Jen,et al.  Overcoming the Photovoltage Plateau in Large Bandgap Perovskite Photovoltaics. , 2018, Nano letters.

[25]  A. Jen,et al.  Enhancing Defect Tolerance and Phase Stability of High-Bandgap Perovskites via Guanidinium Alloying , 2018 .

[26]  T. Leijtens,et al.  Compositional Engineering for Efficient Wide Band Gap Perovskites with Improved Stability to Photoinduced Phase Segregation , 2018 .

[27]  P. Kamat,et al.  Light-Induced Anion Phase Segregation in Mixed Halide Perovskites , 2018 .

[28]  Michael Grätzel,et al.  Systematic investigation of the impact of operation conditions on the degradation behaviour of perovskite solar cells , 2018, Nature Energy.

[29]  Des Gibson,et al.  Development of an Indoor Photovoltaic Energy Harvesting Module for Autonomous Sensors in Building Air Quality Applications , 2017, IEEE Internet of Things Journal.

[30]  P. Kamat,et al.  Rationalizing the light-induced phase separation of mixed halide organic–inorganic perovskites , 2017, Nature Communications.

[31]  Bo Chen,et al.  Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations , 2017, Nature Energy.

[32]  M. Freitag,et al.  Dye-sensitized solar cells for efficient power generation under ambient lighting , 2017, Nature Photonics.

[33]  Ian D. Sharp,et al.  Band Tailing and Deep Defect States in CH3NH3Pb(I1–xBrx)3 Perovskites As Revealed by Sub-Bandgap Photocurrent , 2017 .

[34]  H. Ade,et al.  Fast charge separation in a non-fullerene organic solar cell with a small driving force , 2016, Nature Energy.

[35]  Harrison Ka Hin Lee,et al.  Is organic photovoltaics promising for indoor applications , 2016 .

[36]  Richard H. Friend,et al.  Photon recycling in lead iodide perovskite solar cells , 2016, Science.

[37]  Chien-Yu Chen,et al.  Perovskite Photovoltaics for Dim‐Light Applications , 2015 .

[38]  Mohsen Guizani,et al.  Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications , 2015, IEEE Communications Surveys & Tutorials.

[39]  Yang Yang,et al.  Under the spotlight: The organic–inorganic hybrid halide perovskite for optoelectronic applications , 2015 .

[40]  D. Ginger,et al.  Impact of microstructure on local carrier lifetime in perovskite solar cells , 2015, Science.

[41]  Kristian Sommer Thygesen,et al.  BANDGAP CALCULATIONS AND TRENDS OF ORGANOMETAL HALIDE PEROVSKITES , 2014 .

[42]  Peter Veelaert,et al.  A Proposal for Typical Artificial Light Sources for the Characterization of Indoor Photovoltaic Applications , 2014 .

[43]  L. Reindl,et al.  Erratum to “Maximum Efficiencies of Indoor Photovoltaic Devices” , 2013 .

[44]  J. Noh,et al.  Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. , 2013, Nano letters.

[45]  Zhong Lin Wang,et al.  Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems. , 2012, Angewandte Chemie.

[46]  Zhongju Wang Self‐Powered Nanosensors: Self‐Powered Nanosensors and Nanosystems (Adv. Mater. 2/2012) , 2012 .

[47]  Laura Bellia,et al.  Lighting in indoor environments: Visual and non-visual effects of light sources with different spect , 2011 .

[48]  P. Veelaert,et al.  Efficiency simulations of thin film chalcogenide photovoltaic cells for different indoor lighting conditions , 2011 .

[49]  A. Iera,et al.  The Internet of Things: A survey , 2010, Comput. Networks.

[50]  Jean Manca,et al.  Relating the open-circuit voltage to interface molecular properties of donor:acceptor bulk heterojunction solar cells , 2010 .

[51]  Uwe Rau,et al.  Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells , 2007 .

[52]  R. Grigorovici,et al.  Optical Properties and Electronic Structure of Amorphous Germanium , 1966, 1966.

[53]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .