Alternating sign matrices and hypermatrices, and a generalization of Latin squares

An alternating sign matrix, or ASM, is a $(0, \pm 1)$-matrix where the nonzero entries in each row and column alternate in sign. We generalize this notion to hypermatrices: an $n\times n\times n$ hypermatrix $A=[a_{ijk}]$ is an {\em alternating sign hypermatrix}, or ASHM, if each of its planes, obtained by fixing one of the three indices, is an ASM. Several results concerning ASHMs are shown, such as finding the maximum number of nonzeros of an $n\times n\times n$ ASHM, and properties related to Latin squares. Moreover, we investigate completion problems, in which one asks if a subhypermatrix can be completed (extended) into an ASHM. We show several theorems of this type.

[1]  Richard A. Brualdi,et al.  Alternating sign matrices and their Bruhat order , 2017, Discret. Math..

[2]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[3]  Geir Dahl,et al.  Alternating sign matrices, extensions and related cones , 2017, Adv. Appl. Math..

[4]  D. Bressoud Proofs and Confirmations: The Story of the Alternating-Sign Matrix Conjecture , 1999 .

[5]  Leslie Hogben,et al.  Combinatorial Matrix Theory , 2013 .

[6]  David P. Robbins,et al.  Alternating Sign Matrices and Descending Plane Partitions , 1983, J. Comb. Theory, Ser. A.

[7]  Jessica Striker,et al.  The Alternating Sign Matrix Polytope , 2007, Electron. J. Comb..

[8]  Richard A. Brualdi,et al.  Symmetric alternating sign matrices , 2014, Australas. J Comb..

[9]  H. Ryser Combinatorial Mathematics: THE PRINCIPLE OF INCLUSION AND EXCLUSION , 1963 .

[10]  Richard A. Brualdi,et al.  Completions of Alternating Sign Matrices , 2015, Graphs Comb..

[11]  Michael K. Ng,et al.  Birkhoff-von Neumann Theorem for Multistochastic Tensors , 2014, SIAM J. Matrix Anal. Appl..

[12]  Vincent A. Knight,et al.  Higher Spin Alternating Sign Matrices , 2007, Electron. J. Comb..

[13]  Robert Brignall Wreath Products of Permutation Classes , 2007, Electron. J. Comb..

[14]  R. Brualdi Combinatorial Matrix Classes , 2006 .

[15]  Richard A. Brualdi,et al.  Patterns of alternating sign matrices , 2011, 1104.4075.

[16]  J Csima,et al.  Multidimensional stochastic matrices and patterns , 1970 .