Silicon waferboard detector module for an optical heterodyne balanced receiver with integrated bypass capacitors

We describe the design, fabrication, and testing of a silicon waferboard dual-detector module used in an integrated optical heterodyne balanced receiver. This 'Silicon Waferboard' approach, as its name implies, substitutes a silicon substrate incorporating precision micromachined structures in lieu of conventional printed circuit boards and has been used for both optical transmitter and receiver fabrication. Our dual-detector receiver substrate incorporates orientation-dependent etched v-grooves for fiber placement in addition to metal/insulator/metal (MIM) bypass capacitors and high-speed photodetectors. Preliminary measurements indicated a receiver bandwidth potential of 14 GHz. The performance of the dual-detector receiver module as well as its individual components will be described.