Critical Limb Ischemia Classification and Therapeutic Angiogenesis

[1]  A. Pockley,et al.  VEGF and VEGF receptor expression in human chronic critical limb ischaemia. , 2004, European journal of vascular and endovascular surgery : the official journal of the European Society for Vascular Surgery.

[2]  R. Donnelly,et al.  Therapeutic angiogenesis in peripheral arterial disease: can biotechnology produce an effective collateral circulation? , 2004, European journal of vascular and endovascular surgery : the official journal of the European Society for Vascular Surgery.

[3]  M. Salis,et al.  Nerve growth factor supplementation reverses the impairment, induced by Type 1 diabetes, of hindlimb post-ischaemic recovery in mice , 2004, Diabetologia.

[4]  R. Draghia‐Akli,et al.  Insulin-like growth factor I plasmid therapy promotes in vivo angiogenesis. , 2004, Molecular therapy : the journal of the American Society of Gene Therapy.

[5]  C. Cooper,et al.  Evaluation and medical treatment of peripheral arterial disease , 2003, Current opinion in cardiology.

[6]  R. Sarkar,et al.  Overexpression of endothelial nitric oxide synthase increases skeletal muscle blood flow and oxygenation in severe rat hind limb ischemia. , 2003, Journal of vascular surgery.

[7]  A. Bett,et al.  Vascular endothelial growth factor stimulates angiogenesis without improving collateral blood flow following hindlimb ischemia in rabbits , 2003, Heart and Vessels.

[8]  H. Johansson,et al.  Neuropeptide Y induces ischemic angiogenesis and restores function of ischemic skeletal muscles. , 2003, The Journal of clinical investigation.

[9]  N. Ferrara,et al.  The biology of VEGF and its receptors , 2003, Nature Medicine.

[10]  P. Carmeliet Angiogenesis in health and disease , 2003, Nature Medicine.

[11]  Philippe Leboulch,et al.  Angiogenic synergism, vascular stability and improvement of hind-limb ischemia by a combination of PDGF-BB and FGF-2 , 2003, Nature Medicine.

[12]  Lijun Li,et al.  Neuropeptide Y: a new mediator linking sympathetic nerves, blood vessels and immune system? , 2003, Canadian journal of physiology and pharmacology.

[13]  Z. Zukowska,et al.  Neuropeptide Y: a novel mechanism for ischemic angiogenesis. , 2003, Trends in cardiovascular medicine.

[14]  R. Kauppinen,et al.  Fibroblast growth factor‐4 induces vascular permeability, angiogenesis, and arteriogenesis in a rabbit hind limb ischemia model , 2003, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[15]  Lijun Li,et al.  Dual role of dipeptidyl peptidase IV (DPP IV) in angiogenesis and vascular remodeling. , 2003, Advances in experimental medicine and biology.

[16]  Y. Kan,et al.  Adeno-associated viral vector-mediated gene transfer of VEGF normalizes skeletal muscle oxygen tension and induces arteriogenesis in ischemic rat hindlimb. , 2003, Molecular therapy : the journal of the American Society of Gene Therapy.

[17]  W. Schaper,et al.  Blood monocyte concentration is critical for enhancement of collateral artery growth. , 2002, American journal of physiology. Heart and circulatory physiology.

[18]  K. Nakagawa,et al.  Fibroblast Growth Factor-2 Gene Transfer Can Stimulate Hepatocyte Growth Factor Expression Irrespective of Hypoxia-Mediated Downregulation in Ischemic Limbs , 2002, Circulation research.

[19]  C. Wright Effects of vascular endothelial growth factor (VEGF)A and VEGFB gene transfer on vascular reserve in a conscious rabbit hindlimb ischaemia model , 2002, Clinical and experimental pharmacology & physiology.

[20]  H. Matsubara,et al.  Improvement of Collateral Perfusion and Regional Function by Implantation of Peripheral Blood Mononuclear Cells Into Ischemic Hibernating Myocardium , 2002, Arteriosclerosis, thrombosis, and vascular biology.

[21]  M. Salis,et al.  Nerve Growth Factor Promotes Angiogenesis and Arteriogenesis in Ischemic Hindlimbs , 2002, Circulation.

[22]  Masanori Hangai,et al.  Matrix metalloproteinase-9-dependent exposure of a cryptic migratory control site in collagen is required before retinal angiogenesis. , 2002, The American journal of pathology.

[23]  G. Semenza Signal transduction to hypoxia-inducible factor 1. , 2002, Biochemical pharmacology.

[24]  R. Hynes A reevaluation of integrins as regulators of angiogenesis , 2002, Nature Medicine.

[25]  L. Chao,et al.  Human Endothelial Nitric Oxide Synthase Gene Delivery Promotes Angiogenesis in a Rat Model of Hindlimb Ischemia , 2002, Arteriosclerosis, thrombosis, and vascular biology.

[26]  S. Ylä-Herttuala,et al.  Evaluation of angiogenesis and side effects in ischemic rabbit hindlimbs after intramuscular injection of adenoviral vectors encoding VEGF and LacZ , 2002, The journal of gene medicine.

[27]  R. Lederman,et al.  Therapeutic angiogenesis with recombinant fibroblast growth factor-2 for intermittent claudication (the TRAFFIC study): a randomised trial , 2002, The Lancet.

[28]  C. Jackson Matrix metalloproteinases and angiogenesis , 2002, Current opinion in nephrology and hypertension.

[29]  U. Ikeda,et al.  AAV-mediated VEGF gene transfer into skeletal muscle stimulates angiogenesis and improves blood flow in a rat hindlimb ischemia model. , 2002, Cardiovascular research.

[30]  David A. Cheresh,et al.  Role of integrins in cell invasion and migration , 2002, Nature Reviews Cancer.

[31]  J. Isner,et al.  Targeting Kinin B1 Receptor for Therapeutic Neovascularization , 2002, Circulation.

[32]  P. McBride,et al.  The significance of lower extremity peripheral arterial disease , 2002, Clinical cardiology.

[33]  W. Pevec,et al.  Functional outcome of new blood vessel growth into ischemic skeletal muscle. , 2001, Journal of vascular surgery.

[34]  R. Sarkar,et al.  Administration of adenoviral vectors induces gangrene in acutely ischemic rat hindlimbs: role of capsid protein-induced inflammation. , 2001, Journal of vascular surgery.

[35]  C. Emanueli,et al.  Targeting kinin receptors for the treatment of tissue ischaemia. , 2001, Trends in pharmacological sciences.

[36]  S. Ylä-Herttuala,et al.  Gene therapy for therapeutic angiogenesis in critically ischaemic lower limb – on the way to the clinic , 2001, European journal of clinical investigation.

[37]  M. Castresana,et al.  Reactive oxygen and NF-kappaB in VEGF-induced migration of human vascular smooth muscle cells. , 2001, Biochemical and biophysical research communications.

[38]  H. Weltman,et al.  Effect of nerve growth factor on endothelial cell biology: proliferation and adherence molecule expression on human dermal microvascular endothelial cells , 2001, Archives of Dermatological Research.

[39]  L. Calzà,et al.  Nerve growth factor control of neuronal expression of angiogenetic and vasoactive factors , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[40]  H. A. Hartman,et al.  Revascularization in the rabbit hindlimb: dissociation between capillary sprouting and arteriogenesis. , 2001, Cardiovascular research.

[41]  Luigi Aloe,et al.  Human monocyte/macrophages activate by exposure to LPS overexpress NGF and NGF receptors , 2001, Journal of Neuroimmunology.

[42]  M. Salis,et al.  Local Delivery of Human Tissue Kallikrein Gene Accelerates Spontaneous Angiogenesis in Mouse Model of Hindlimb Ischemia , 2001, Circulation.

[43]  A. Tedgui,et al.  Role of matrix metalloproteinases in blood flow-induced arterial enlargement: interaction with NO. , 2000, Arteriosclerosis, thrombosis, and vascular biology.

[44]  I. Buschmann,et al.  Vascular endothelial growth factor (VEGF) stimulates monocyte migration through endothelial monolayers via increased integrin expression. , 2000, European journal of cell biology.

[45]  T. McCaffrey,et al.  p75NTR Mediates Neurotrophin-Induced Apoptosis of Vascular Smooth Muscle Cells , 2000 .

[46]  J. Garb,et al.  Angiogenic therapy for the chronically ischemic lower limb in a rabbit model. , 2000, The Journal of surgical research.

[47]  A. Luttun,et al.  The role of proteinases in angiogenesis, heart development, restenosis, atherosclerosis, myocardial ischemia, and stroke: Insights from genetic studies , 2000, Current atherosclerosis reports.

[48]  J. Isner,et al.  Vascular endothelial growth factor(165) gene transfer augments circulating endothelial progenitor cells in human subjects. , 2000, Circulation research.

[49]  N. Glazer,et al.  Angiopoietin-1 protects the adult vasculature against plasma leakage , 2000, Nature Medicine.

[50]  P. Carmeliet Mechanisms of angiogenesis and arteriogenesis , 2000, Nature Medicine.

[51]  A. Lambiase,et al.  Nerve growth factor promotes corneal healing: structural, biochemical, and molecular analyses of rat and human corneas. , 2000, Investigative ophthalmology & visual science.

[52]  J. Isner,et al.  Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[53]  J. Cooke,et al.  Nitric oxide induces the synthesis of vascular endothelial growth factor by rat vascular smooth muscle cells. , 2000, Arteriosclerosis, Thrombosis and Vascular Biology.

[54]  G. Tognoni,et al.  Clinical Outcome and its Predictors in 1560 Patients with Critical Leg Ischaemia , 1999 .

[55]  B. Zetter,et al.  Vascular endothelial growth factor-induced migration of vascular smooth muscle cells in vitro. , 1999, Microvascular research.

[56]  L. Chao,et al.  Kallikrein gene delivery inhibits vascular smooth muscle cell growth and neointima formation in the rat artery after balloon angioplasty. , 1999, Hypertension.

[57]  R. Busse,et al.  Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation , 1999, Nature.

[58]  Y. Fujio,et al.  Akt Mediates Cytoprotection of Endothelial Cells by Vascular Endothelial Growth Factor in an Anchorage-dependent Manner* , 1999, The Journal of Biological Chemistry.

[59]  D. Hanahan,et al.  Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. , 1999, Genes & development.

[60]  G. Yancopoulos,et al.  Growth factors acting via endothelial cell-specific receptor tyrosine kinases: VEGFs, angiopoietins, and ephrins in vascular development. , 1999, Genes & development.

[61]  B. Hempstead,et al.  NGF activates similar intracellular signaling pathways in vascular smooth muscle cells as PDGF-BB but elicits different biological responses. , 1999, Arteriosclerosis, thrombosis, and vascular biology.

[62]  A. Samii,et al.  Vascular endothelial growth factor expression in peripheral nerves and dorsal root ganglia in diabetic neuropathy in rats , 1999, Neuroscience Letters.

[63]  J. Isner,et al.  Rescue of diabetes-related impairment of angiogenesis by intramuscular gene therapy with adeno-VEGF. , 1999, The American journal of pathology.

[64]  W. Pevec,et al.  Regulation of new blood vessel growth into ischemic skeletal muscle. , 1998, Journal of vascular surgery.

[65]  M. Cronin,et al.  Peripheral neuropathy in transgenic diabetic mice: restoration of C-fiber function with human recombinant nerve growth factor. , 1998, Diabetes.

[66]  M. Shibuya,et al.  Vascular endothelial growth factor B (VEGF-B) binds to VEGF receptor-1 and regulates plasminogen activator activity in endothelial cells. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[67]  E. Karwatowska-Prokopczuk,et al.  Mechanisms of vascular growth-promoting effects of neuropeptide Y: role of its inducible receptors , 1998, Regulatory Peptides.

[68]  J. Garb,et al.  Basic fibroblast growth factor stimulates angiogenesis in the hindlimb of hyperglycemic rats. , 1998, The Journal of surgical research.

[69]  W. T. Chen,et al.  Neuropeptide Y: a novel angiogenic factor from the sympathetic nerves and endothelium. , 1998, Circulation research.

[70]  H. Granger,et al.  B1 receptor involvement in the effect of bradykinin on venular endothelial cell proliferation and potentiation of FGF‐2 effects , 1998, British journal of pharmacology.

[71]  R. Crystal,et al.  Salvage angiogenesis induced by adenovirus-mediated gene transfer of vascular endothelial growth factor protects against ischemic vascular occlusion. , 1998, Journal of vascular surgery.

[72]  H. Granger,et al.  VEGF upregulates ecNOS message, protein, and NO production in human endothelial cells. , 1998, American journal of physiology. Heart and circulatory physiology.

[73]  P. Huang,et al.  Nitric oxide synthase modulates angiogenesis in response to tissue ischemia. , 1998, The Journal of clinical investigation.

[74]  Arno W. Hoes,et al.  Peripheral arterial disease in the elderly: The Rotterdam Study. , 1998, Arteriosclerosis, thrombosis, and vascular biology.

[75]  W. Schaper,et al.  Monocyte activation in angiogenesis and collateral growth in the rabbit hindlimb. , 1998, The Journal of clinical investigation.

[76]  A. Hajitou,et al.  Angiogenesis by fibroblast growth factor 4 is mediated through an autocrine up-regulation of vascular endothelial growth factor expression. , 1997, Cancer research.

[77]  J. Isner,et al.  Vascular endothelial growth factor/vascular permeability factor produces nitric oxide-dependent hypotension. Evidence for a maintenance role in quiescent adult endothelium. , 1997, Arteriosclerosis, thrombosis, and vascular biology.

[78]  J. Herbert,et al.  NGF exhibits a pro‐apoptotic activity for human vascular smooth muscle cells that is inhibited by TGFβ1 , 1997, FEBS letters.

[79]  During,et al.  Adeno-associated virus as a gene delivery system. , 1997, Advanced drug delivery reviews.

[80]  T. Rosengart,et al.  Therapeutic angiogenesis: a comparative study of the angiogenic potential of acidic fibroblast growth factor and heparin. , 1997, Journal of vascular surgery.

[81]  Thomas N. Sato,et al.  Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. , 1997, Science.

[82]  M. Dennis,et al.  Regulation of mitogenesis by kinins in arterial smooth muscle cells. , 1997, The American journal of physiology.

[83]  W. Schaper,et al.  Monocyte chemotactic protein-1 increases collateral and peripheral conductance after femoral artery occlusion. , 1997, Circulation research.

[84]  J. Wolfe,et al.  Critical and subcritical ischaemia. , 1997, European journal of vascular and endovascular surgery : the official journal of the European Society for Vascular Surgery.

[85]  R Bicknell,et al.  Nitric oxide synthase lies downstream from vascular endothelial growth factor-induced but not basic fibroblast growth factor-induced angiogenesis. , 1997, The Journal of clinical investigation.

[86]  W. Risau,et al.  Mechanisms of angiogenesis , 1997, Nature.

[87]  M. Koelemay,et al.  The value of non-invasive techniques for the assessment of critical limb ischaemia. , 1997, European journal of vascular and endovascular surgery : the official journal of the European Society for Vascular Surgery.

[88]  James M. Wilson,et al.  Recombinant adeno-associated virus for muscle directed gene therapy , 1997, Nature Medicine.

[89]  B. Schölkens,et al.  Different B1 kinin receptor expression and pharmacology in endothelial cells of different origins and species. , 1997, The Journal of pharmacology and experimental therapeutics.

[90]  J. Smith,et al.  Fibroblast growth factors and their receptors. , 1997, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[91]  J. Isner,et al.  Direct intramuscular gene transfer of naked DNA encoding vascular endothelial growth factor augments collateral development and tissue perfusion. , 1996, Circulation.

[92]  M. Lohse,et al.  Ligand-induced Phosphorylation/Dephosphorylation of the Endogenous Bradykinin B2 Receptor from Human Fibroblasts* , 1996, The Journal of Biological Chemistry.

[93]  B. Byrne,et al.  Gene delivery to skeletal muscle results in sustained expression and systemic delivery of a therapeutic protein. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[94]  W. Schaper,et al.  Molecular mechanisms of coronary collateral vessel growth. , 1996, Circulation research.

[95]  J. Isner,et al.  Therapeutic angiogenesis following arterial gene transfer of vascular endothelial growth factor in a rabbit model of hindlimb ischemia. , 1996, Biochemical and biophysical research communications.

[96]  B. Davidson,et al.  Systemic delivery of the interleukin-1 receptor antagonist protein using a new strategy of direct adenoviral-mediated gene transfer to skeletal muscle capillary endothelium in the isolated rat hindlimb. , 1996, Human gene therapy.

[97]  H. Granger,et al.  Acidic and basic FGFs dilate arterioles of skeletal muscle through a NO-dependent mechanism. , 1996, The American journal of physiology.

[98]  S. Bunting,et al.  Vascular endothelial growth factor augments muscle blood flow and function in a rabbit model of chronic hindlimb ischemia. , 1996, Journal of cardiovascular pharmacology.

[99]  J. Isner,et al.  Synergistic effect of vascular endothelial growth factor and basic fibroblast growth factor on angiogenesis in vivo. , 1995, Circulation.

[100]  J. Slavin,et al.  Fibroblast growth factors: at the heart of angiogenesis. , 1995, Cell biology international.

[101]  J. Isner,et al.  Site-specific therapeutic angiogenesis after systemic administration of vascular endothelial growth factor. , 1995, Journal of vascular surgery.

[102]  Daniel Grandt,et al.  Proteolytic processing of neuropeptide Y and peptide YY by dipeptidyl peptidase IV , 1993, Regulatory Peptides.

[103]  C. Soria,et al.  Activation of the 92 kDa type IV collagenase by tissue kallikrein , 1993, Journal of cellular physiology.

[104]  J. Wolfe,et al.  Critical leg ischaemia: an appraisal of clinical definitions , 1993, The British journal of surgery.

[105]  C. Wahlestedt,et al.  Origin and Actions of Neuropeptide Y in the Cardiovascular System , 1993 .

[106]  J. Garb,et al.  Enhanced angiogenesis and growth of collaterals by in vivo administration of recombinant basic fibroblast growth factor in a rabbit model of acute lower limb ischemia: dose-response effect of basic fibroblast growth factor. , 1992, Journal of vascular surgery.

[107]  K. Bhoola,et al.  Bioregulation of kinins: kallikreins, kininogens, and kininases. , 1992, Pharmacological reviews.

[108]  S. Ahn Endovascular surgery: current concepts and its importance to the vascular surgeon. , 1992, European journal of vascular surgery.

[109]  J. Hall,et al.  Bradykinin receptors: pharmacological properties and biological roles. , 1992, Pharmacology & therapeutics.

[110]  D. Clement Second European Consensus Document on chronic critical leg ischemia. , 1991, Circulation.

[111]  D. Connolly,et al.  Vascular permeability factor: a tumor-derived polypeptide that induces endothelial cell and monocyte procoagulant activity, and promotes monocyte migration , 1990, The Journal of experimental medicine.

[112]  D. Goeddel,et al.  Vascular endothelial growth factor is a secreted angiogenic mitogen. , 1989, Science.

[113]  P. Holstein,et al.  The Ischaemic Leg: a Long-Term Follow-Up with Special Reference to the Predictive Value of the Systolic Digital Blood Pressure - Part II: After Arterial Reconstruction , 1989, The Thoracic and cardiovascular surgeon.

[114]  D. Rifkin,et al.  Processing, secretion, and biological properties of a novel growth factor of the fibroblast growth factor family with oncogenic potential , 1988, Molecular and cellular biology.

[115]  E. Levine,et al.  Human endothelial cells: use of heparin in cloning and long-term serial cultivation. , 1983, Science.

[116]  D. Regoli,et al.  Pharmacology of bradykinin and related kinins. , 1980, Advances in experimental medicine and biology.

[117]  P. Gullino,et al.  Role of prostaglandin E1 and copper in angiogenesis. , 1982, Journal of the National Cancer Institute.