Stabilized finite elements for compressible turbulent Navier-Stokes

In this research a stabilized finite element approach is utilized in the development of a high-order flow solver for compressible turbulent flows. The Reynolds averaged Navier-Stokes (RANS) equations and modified Spalart-Almaras (SA) turbulence model are discretized using the streamline/upwind Petrov-Galerkin (SUPG) scheme. A fully implicit methodology is used to obtain steady state solutions or to drive unsteady problems at each time step. Order of accuracy is assessed for inviscid and viscous flows in two and three dimensions via the method of manufactured solutions. Proper treatment of curved surface geometries is of vital importance in high-order methods, especially when high aspect ratio elements are used in viscous flow regions. In two dimensions, analytic surface representations are used to ensure proper surface point placement, and an algebraic mesh smoothing procedure is applied to prevent invalid elements in high aspect ratio meshes. In dealing with complex three-dimensional geometries, high-order curved surfaces are generated via a Computational Analysis PRogramming Interface (CAPRI), while the interior meshes are deformed through a linear elasticity solver. In addition, the effects of curved elements on solution accuracy are evaluated. Finally, several test cases in two and three dimensions are presented and compared with benchmark results and/or experimental data.

[1]  B. Leer,et al.  Flux-vector splitting for the Euler equations , 1997 .

[2]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[3]  L. Franca,et al.  Stabilized finite element methods. II: The incompressible Navier-Stokes equations , 1992 .

[4]  Michael Long,et al.  Summary of the First AIAA CFD High Lift Prediction Workshop , 2011 .

[5]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[6]  Raytcho D. Lazarov,et al.  Higher-order finite element methods , 2005, Math. Comput..

[7]  Laslo T. Diosady,et al.  Preconditioning methods for discontinuous Galerkin solutions of the Navier-Stokes equations , 2009, J. Comput. Phys..

[8]  D. Mavriplis,et al.  Robust Computation of Turbulent Flows Using a Discontinuous Galerkin Method , 2012 .

[9]  R. B. Bond,et al.  The Influence of Stabilization Parameters in the SUPG Finite Element Method for Hypersonic Flows , 2010 .

[10]  R. Schwane,et al.  ON THE ACCURACY OF UPWIND SCHEMES FOR THE SOLUTION OF THE NAVIER-STOKES EQUATIONS , 1987 .

[11]  Claes Johnson Numerical solution of partial differential equations by the finite element method , 1988 .

[12]  Robert Haimes,et al.  Adjoint-Based Design Optimization Using CAD Parameterization Through CAPRI , 2012 .

[13]  Thomas J. R. Hughes,et al.  Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations , 1984 .

[14]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[15]  Li Wang,et al.  Techniques for high-order adaptive discontinuous Galerkin discretizations in fluid dynamics , 2009 .

[16]  R. McLeod Node Requirements for High-order Approximation over Curved Finite Elements , 1976 .

[17]  W. K. Anderson,et al.  Three-Dimensional Stabilized Finite Elements for Compressible Navier–Stokes , 2013 .

[18]  Tayfun E. Tezduyar,et al.  Stabilization and shock-capturing parameters in SUPG formulation of compressible flows , 2004 .

[19]  Thomas J. R. Hughes,et al.  Recent progress in the development and understanding of SUPG methods with special reference to the compressible Euler and Navier-Stokes equations†‡ , 1987 .

[20]  P. Roache Code Verification by the Method of Manufactured Solutions , 2002 .

[21]  Philip L. Roe,et al.  A comparison of numerical flux formulas for the Euler and Navier-Stokes equations , 1987 .

[22]  T. Hughes,et al.  Stabilized finite element methods. I: Application to the advective-diffusive model , 1992 .

[23]  W. K. Anderson,et al.  High-order Methods for Solutions of Three-dimensional Turbulent Flows , 2013 .

[24]  Chunlei Liang,et al.  Large Eddy Simulation of Flow over a Cylinder Using High-Order Spectral Difference Method , 2008 .

[25]  Tayfun E. Tezduyar,et al.  SUPG finite element computation of compressible flows with the entropy and conservation variables formulations , 1993 .

[26]  W. K. Anderson,et al.  Petrov-Galerkin and discontinuous-Galerkin methods for time-domain and frequency-domain electromagnetic simulations , 2011, J. Comput. Phys..

[27]  R. McLeod,et al.  High Order Transformation Methods for Curved Finite Elements , 1978 .

[28]  D. Darmofal,et al.  Least-Squares Method , 2009 .

[29]  Timothy J. Barth,et al.  Numerical Methods for Gasdynamic Systems on Unstructured Meshes , 1997, Theory and Numerics for Conservation Laws.

[30]  Cheng Wang,et al.  Positivity property of second-order flux-splitting schemes for the compressible Euler equations , 2003 .

[31]  David L. Darmofal,et al.  The solution of the compressible Euler equations at low Mach numbers using a stabilized finite element algorithm , 2001 .

[32]  Tayfan E. Tezduyar,et al.  Stabilized Finite Element Formulations for Incompressible Flow Computations , 1991 .

[33]  D. Bonhaus,et al.  A higher order accurate finite element method for viscous compressible flows , 1999 .

[34]  Jean-Marc Moschetta,et al.  Regular Article: Positivity of Flux Vector Splitting Schemes , 1999 .

[35]  W. K. Anderson,et al.  Navier-Stokes Computations of Vortical Flows Over Low-Aspect-Ratio Wings , 1987 .

[36]  Jaime Peraire,et al.  Navier-Stokes Solution Using Hybridizable Discontinuous Galerkin methods , 2011 .

[37]  Christian Rohde,et al.  An Introduction to Recent Developments in Theory and Numerics for Conservation Laws: Proceedings of the International School on Theory and Numerics for Conservation Laws, Freiburg/Littenweiler, Germany, October 20-24, 1997 , 1999, Theory and Numerics for Conservation Laws.

[38]  W. K. Anderson,et al.  High-Order Finite-Element Method for Three-Dimensional Turbulent Navier-Stokes , 2013 .

[39]  W. K. Anderson,et al.  Comparison of Finite Volume Flux Vector Splittings for the Euler Equations , 1985 .

[40]  Todd A. Oliver,et al.  Validation of SUPG Finite Element Simulations of Shockwave/Turbulent Boundary Layer Interactions in Hypersonic Flows , 2013 .

[41]  Benjamin S. Kirk,et al.  Development and validation of a SUPG finite element scheme for the compressible Navier–Stokes equations using a modified inviscid flux discretization , 2008 .

[42]  F. Chalot,et al.  Higher-Order Stabilized Finite Elements in an Industrial Navier-Stokes Code , 2010 .

[43]  Dimitri J. Mavriplis,et al.  High-order discontinuous Galerkin methods using an hp-multigrid approach , 2006, J. Comput. Phys..

[44]  Michael Dumbser,et al.  Arbitrary high order PNPM schemes on unstructured meshes for the compressible Navier–Stokes equations , 2010 .

[45]  J. Peraire,et al.  Sub-Cell Shock Capturing for Discontinuous Galerkin Methods , 2006 .

[46]  Regina C. Almeida,et al.  An adaptive Petrov-Galerkin formulation for the compressible Euler and Navier-Stokes equations , 1996 .

[47]  Arnold Afb,et al.  Comparison of SU/PG and DG Finite-Element Techniques for the Compressible Navier-Stokes Equations on Anisotropic Unstructured Meshes , 2013 .

[48]  P. G. Ciarlet,et al.  Interpolation theory over curved elements, with applications to finite element methods , 1972 .

[49]  Chi-Wang Shu,et al.  The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case , 1990 .

[50]  Marco Luciano Savini,et al.  Discontinuous Galerkin solution of the Reynolds-averaged Navier–Stokes and k–ω turbulence model equations , 2005 .

[51]  K. Bathe,et al.  Effects of element distortions on the performance of isoparametric elements , 1993 .

[52]  Mehdi R. Khorrami,et al.  Application of FUN3D Solver for Aeroacoustics Simulation of a Nose Landing Gear Configuration , 2011 .

[53]  Venkat Venkatakrishnan,et al.  Higher Order Schemes for the Compressible Navier-Stokes Equations , 2003 .

[54]  S. Rebay,et al.  A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations , 1997 .

[55]  J. Steger,et al.  Flux vector splitting of the inviscid gasdynamic equations with application to finite-difference methods , 1981 .

[56]  J. Z. Zhu,et al.  The finite element method , 1977 .

[57]  Thomas-Peter Fries,et al.  Review of Petrov-Galerkin Stabilization Approaches and an Extension to Meshfree MethodsA , 2004 .

[58]  S. Rebay,et al.  High-Order Accurate Discontinuous Finite Element Solution of the 2D Euler Equations , 1997 .

[59]  Marco Ceze,et al.  A Robust hp-Adaptation Method for Discontinuous Galerkin Discretizations Applied to Aerodynamic Flows , 2013 .

[60]  Christian Allen,et al.  Parallel Flow-Solver and Mesh Motion Scheme for Forward Flight Rotor Simulation , 2006 .

[61]  Thomas J. R. Hughes,et al.  Stabilized Methods for Compressible Flows , 2010, J. Sci. Comput..

[62]  W. Kyle Anderson,et al.  Solutions of High-order Methods for Three-dimensional Compressible Viscous Flows , 2012 .

[63]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[64]  Dimitri J. Mavriplis,et al.  Progress in High-Order Discontinuous Galerkin Methods for Aerospace Applications , 2009 .

[65]  Michel Fortin,et al.  Finite-element solution of compressible viscous flows using conservative variables , 1994 .

[66]  Patrick Knupp,et al.  Code Verification by the Method of Manufactured Solutions , 2000 .

[67]  David L. Darmofal,et al.  A triangular cut-cell adaptive method for high-order discretizations of the compressible Navier-Stokes equations , 2007, J. Comput. Phys..

[68]  R. Bouard,et al.  Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform translation. Part 1. Steady flow , 1977, Journal of Fluid Mechanics.

[69]  Per-Olof Persson,et al.  An Efficient Low Memory Implicit DG Algorithm for Time Dependent Problems , 2006 .

[70]  Norbert Kroll ADIGMA - A European Initiative on the Development of Adaptive Higher-Order Variational Methods for Aerospace Applications : Results of a collaborative research project funded by the European Union, 2006-2009 , 2010 .

[71]  David L. Darmofal,et al.  p-Multigrid solution of high-order discontinuous Galerkin discretizations of the compressible Navier-Stokes equations , 2005 .

[72]  Lynita K. Newswander,et al.  Metis , 2015 .

[73]  David L. Darmofal,et al.  DEVELOPMENT OF A HIGHER-ORDER SOLVER FOR AERODYNAMIC APPLICATIONS , 2004 .

[74]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics. X - The compressible Euler and Navier-Stokes equations , 1991 .