Today's and tomorrow's retrieval practice in the audiovisual archive

Content-based video retrieval is maturing to the point where it can be used in real-world retrieval practices. One such practice is the audiovisual archive, whose users increasingly require fine-grained access to broadcast television content. We investigate to what extent content-based video retrieval methods can improve search in the audiovisual archive. In particular, we propose an evaluation methodology tailored to the specific needs and circumstances of the audiovisual archive, which are typically missed by existing evaluation initiatives. We utilize logged searches and content purchases from an existing audiovisual archive to create realistic query sets and relevance judgments. To reflect the retrieval practice of both the archive and the video retrieval community as closely as possible, our experiments with three video search engines incorporate archive-created catalog entries as well as state-of-the-art multimedia content analysis results. We find that incorporating content-based video retrieval into the archive's practice results in significant performance increases for shot retrieval and for retrieving entire television programs. Our experiments also indicate that individual content-based retrieval methods yield approximately equal performance gains. We conclude that the time has come for audiovisual archives to start accommodating content-based video retrieval methods into their daily practice.

[1]  Jun Yang,et al.  Exploring temporal consistency for video analysis and retrieval , 2006, MIR '06.

[2]  Laura Hollink,et al.  Search behavior of media professionals at an audiovisual archive: A transaction log analysis , 2010 .

[3]  R. Edmondson Audiovisual archiving : philosophy and principles , 2004 .

[4]  Maarten de Rijke,et al.  Shallow Morphological Analysis in Monolingual Information Retrieval for Dutch, German, and Italian , 2001, CLEF.

[5]  Thorsten Joachims,et al.  Accurately Interpreting Clickthrough Data as Implicit Feedback , 2017 .

[6]  Koen E. A. van de Sande,et al.  Evaluating Color Descriptors for Object and Scene Recognition , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Marcel Worring,et al.  VideOlympics: Real-Time Evaluation of Multimedia Retrieval Systems , 2008, IEEE MultiMedia.

[8]  Jun Yang,et al.  Finding Person X: Correlating Names with Visual Appearances , 2004, CIVR.

[9]  Jin Zhao,et al.  Video Retrieval Using High Level Features: Exploiting Query Matching and Confidence-Based Weighting , 2006, CIVR.

[10]  Alexandre Allauzen,et al.  Open vocabulary ASR for audiovisual document indexation , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[11]  Rong Yan,et al.  How many high-level concepts will fill the semantic gap in news video retrieval? , 2007, CIVR '07.

[12]  CHENGXIANG ZHAI,et al.  A study of smoothing methods for language models applied to information retrieval , 2004, TOIS.

[13]  Cor J. Veenman,et al.  Kernel Codebooks for Scene Categorization , 2008, ECCV.

[14]  Filip Radlinski,et al.  How does clickthrough data reflect retrieval quality? , 2008, CIKM '08.

[15]  Shih-Fu Chang,et al.  Query-Adaptive Fusion for Multimodal Search , 2008, Proceedings of the IEEE.

[16]  Katja Hofmann,et al.  Comparing click-through data to purchase decisions for retrieval evaluation , 2010, SIGIR '10.

[17]  Paul Over,et al.  Evaluation campaigns and TRECVid , 2006, MIR '06.

[18]  Richard Wright,et al.  Broadcast Archives: Preserving the Future , 2001, ICHIM.

[19]  Rong Yan,et al.  Learning query-class dependent weights in automatic video retrieval , 2004, MULTIMEDIA '04.

[20]  Ross Wilkinson,et al.  Effective retrieval of structured documents , 1994, SIGIR '94.

[21]  Christian Petersohn Fraunhofer HHI at TRECVID 2004: Shot Boundary Detection System , 2004, TRECVID.

[22]  Meng Wang,et al.  MSRA atT TRECVID 2008: High-Level Feature Extraction and Automatic Search , 2008, TRECVID.

[23]  Maarten de Rijke,et al.  Search behavior of media professionals at an audiovisual archive: A transaction log analysis , 2010, J. Assoc. Inf. Sci. Technol..

[24]  W. Bruce Croft,et al.  A language modeling approach to information retrieval , 1998, SIGIR '98.

[25]  Ellen M. Voorhees,et al.  The Philosophy of Information Retrieval Evaluation , 2001, CLEF.

[26]  Peter Wilkins,et al.  An investigation into weighted data fusion for content-based multimedia information retrieval , 2009 .

[27]  Thijs Westerveld,et al.  Using generative probabilistic models for multimedia retrieval , 2005, SIGF.

[28]  Marcel Worring,et al.  Concept-Based Video Retrieval , 2009, Found. Trends Inf. Retr..

[29]  Wei-Hao Lin,et al.  Assessing Effectiveness in Video Retrieval , 2005, CIVR.

[30]  Chong-Wah Ngo,et al.  Selection of Concept Detectors for Video Search by Ontology-Enriched Semantic Spaces , 2008, IEEE Transactions on Multimedia.

[31]  Martha Larson,et al.  Multimodal indexing of digital audio-visual documents: A case study for cultural heritage data , 2008, 2008 International Workshop on Content-Based Multimedia Indexing.

[32]  Shih-Fu Chang,et al.  Visually Searching the Web for Content , 1997, IEEE Multim..

[33]  Chong-Wah Ngo,et al.  Representations of Keypoint-Based Semantic Concept Detection: A Comprehensive Study , 2010, IEEE Transactions on Multimedia.

[34]  James Allan,et al.  Approaches to passage retrieval in full text information systems , 1993, SIGIR.

[35]  Marcel Worring,et al.  Balancing thread based navigation for targeted video search , 2008, CIVR '08.

[36]  Milind R. Naphade,et al.  Learning the semantics of multimedia queries and concepts from a small number of examples , 2005, MULTIMEDIA '05.

[37]  M. de Rijke,et al.  UvA-DARE ( Digital Academic Repository ) The MediaMill TRECVID 2008 semantic video search engine , 2008 .

[38]  Maarten de Rijke,et al.  Exploiting redundancy in cross-channel video retrieval , 2007, MIR '07.

[39]  Karen Spärck Jones,et al.  Automatic content-based retrieval of broadcast news , 1995, MULTIMEDIA '95.

[40]  Shih-Fu Chang,et al.  A reranking approach for context-based concept fusion in video indexing and retrieval , 2007, CIVR '07.

[41]  Yihong Gong,et al.  Lessons Learned from Building a Terabyte Digital Video Library , 1999, Computer.

[42]  Christos Diou,et al.  Image annotation using clickthrough data , 2009, CIVR '09.

[43]  Xian-Sheng Hua,et al.  Bayesian video search reranking , 2008, ACM Multimedia.