Superlattice Engineering of Topology in Massive Dirac Fermions

We show that a superlattice potential can be employed to engineer topology in massive Dirac fermions in systems such as bilayer graphene, moir\'e graphene-boron nitride, and transition-metal dichalcogenide (TMD) monolayers and bilayers. We use symmetry analysis to analyze band inversions to determine the Chern number $\mathscr C$ for the valence band as a function of tunable potential parameters for a class of $C_4$ and $C_3$ symmetric potentials. We present a novel method to engineer Chern number $\mathscr{C}=2$ for the valence band and show that the applied potential at minimum must have a scalar together with a non-scalar periodic part. We discover that certain forms of the superlattice potential, which may be difficult to realize in naturally occurring moir\'e patterns, allow for the possibility of non-trivial topological transitions. These forms may be achievable using an external superlattice potential that can be created using contemporary experimental techniques. Our work paves the way to realize the quantum Spin Hall effect (QSHE), quantum anomalous Hall effect (QAHE), and even exotic non-Abelian anyons in the fractional quantum Hall effect (FQHE).

[1]  Michael J. Hoffmann,et al.  Non-Abelian braiding of graph vertices in a superconducting processor , 2022, Nature.

[2]  Shizeng Lin,et al.  Massive Dirac fermions in moiré superlattices: A route towards topological flat minibands and correlated topological insulators , 2021, Physical Review Research.

[3]  A. Georges,et al.  Moiré heterostructures as a condensed-matter quantum simulator , 2020, Nature Physics.

[4]  W. Yao,et al.  Universal superlattice potential for 2D materials from twisted interface inside h-BN substrate , 2020, npj 2D Materials and Applications.

[5]  E. Andrei,et al.  Graphene bilayers with a twist , 2020, Nature Materials.

[6]  J. Shan,et al.  Creation of moiré bands in a monolayer semiconductor by spatially periodic dielectric screening , 2020, Nature Materials.

[7]  L. Balents,et al.  Superconductivity and strong correlations in moiré flat bands , 2020 .

[8]  A. Daley,et al.  One-dimensional Kronig–Penney superlattices at the LaAlO3/SrTiO3 interface , 2019, Nature Physics.

[9]  J. Levy,et al.  Engineered spin-orbit interactions in LaAlO3/SrTiO3-based 1D serpentine electron waveguides , 2019, Science Advances.

[10]  J. Levy,et al.  Frictional drag between superconducting LaAlO3/SrTiO3 nanowires , 2019, Semiconductor Science and Technology.

[11]  J. Levy,et al.  Pascal conductance series in ballistic one-dimensional LaAlO3/SrTiO3 channels , 2019, Science.

[12]  Kenji Watanabe,et al.  Tunable Correlated Chern Insulator and Ferromagnetism in Trilayer Graphene/Boron Nitride Moir\'e Superlattice , 2019 .

[13]  Huimin Sun,et al.  Topological insulator: Spintronics and quantum computations , 2019, Frontiers of Physics.

[14]  J. Levy,et al.  Long‐Range Non‐Coulombic Electron–Electron Interactions between LaAlO3/SrTiO3 Nanowires , 2019, Advanced Materials Interfaces.

[15]  J. Sinova Topological Antiferromagnetic Spintronics , 2018 .

[16]  P. Kim,et al.  Band structure engineering of 2D materials using patterned dielectric superlattices , 2017, Nature Nanotechnology.

[17]  J. Levy,et al.  Physics of SrTiO3-based heterostructures and nanostructures: a review , 2017, Reports on progress in physics. Physical Society.

[18]  Masatoshi Sato,et al.  Topological superconductors: a review , 2016, Reports on progress in physics. Physical Society.

[19]  D. Tong Lectures on the Quantum Hall Effect , 2016, 1606.06687.

[20]  Xiao-Liang Qi,et al.  The Quantum Anomalous Hall Effect: Theory and Experiment , 2016 .

[21]  N. Yao,et al.  Bilayer fractional quantum Hall states with dipoles , 2015, 1505.03099.

[22]  N. Yao,et al.  Topological bands with a Chern number C = 2 by dipolar exchange interactions , 2014, 1410.5667.

[23]  J. Levy,et al.  Nanoscale Phenomena in Oxide Heterostructures , 2014, 1401.1772.

[24]  M. Gilbert,et al.  Bulk Topological Invariants in Noninteracting Point Group Symmetric Insulators , 2012, 1207.5767.

[25]  M. Leijnse,et al.  Introduction to topological superconductivity and Majorana fermions , 2012, 1206.1736.

[26]  D. Sheng,et al.  Fractional quantum Hall effect in topological flat bands with Chern number two , 2012, 1204.1697.

[27]  Wang Yao,et al.  Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. , 2011, Physical review letters.

[28]  N. Regnault,et al.  Zoology of fractional Chern insulators , 2011, 1111.1172.

[29]  D. Sheng,et al.  Non-abelian quantum Hall effect in topological flat bands. , 2011, Physical review letters.

[30]  N. Regnault,et al.  Emergent many-body translational symmetries of Abelian and non-Abelian fractionally filled topological insulators , 2011, 1110.4488.

[31]  Ying Ran,et al.  Nearly flat band with Chern numberC=2on the dice lattice , 2011, 1109.3435.

[32]  B. Andrei Bernevig,et al.  Fractional Chern Insulator , 2011, 1105.4867.

[33]  G. Fiete,et al.  Topological insulators and fractional quantum Hall effect on the ruby lattice , 2011, 1105.4381.

[34]  D. Sheng,et al.  Fractional quantum Hall effect of hard-core bosons in topological flat bands. , 2011, Physical review letters.

[35]  L. Sheng,et al.  Fractional quantum Hall effect in the absence of Landau levels , 2011, Nature communications.

[36]  C. Chamon,et al.  Fractional quantum Hall states at zero magnetic field. , 2010, Physical review letters.

[37]  Xiao-Gang Wen,et al.  High-temperature fractional quantum Hall states. , 2010, Physical review letters.

[38]  J. Levy,et al.  “Water-cycle” mechanism for writing and erasing nanostructures at the LaAlO3/SrTiO3 interface , 2010, 1009.3303.

[39]  Jeremy Levy,et al.  Oxide Nanoelectronics on Demand , 2009, Science.

[40]  N. Reyren,et al.  Electric field control of the LaAlO3/SrTiO3 interface ground state , 2008, Nature.

[41]  C. Hellberg,et al.  Supplemental Information for Nanoscale Control of an Interfacial Metal-Insulator Transition at Room Temperature , 2008 .

[42]  N. Reyren,et al.  Superconducting Interfaces Between Insulating Oxides , 2007, Science.

[43]  Akira Ohtomo,et al.  A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface , 2004, Nature.

[44]  Klaus von Klitzing,et al.  Quantized hall effect , 1983 .

[45]  D. C. Tsui,et al.  Two-Dimensional Magnetotransport in the Extreme Quantum Limit , 1982 .

[46]  B. Halperin Quantized Hall conductance, current carrying edge states, and the existence of extended states in a two-dimensional disordered potential , 1982 .

[47]  Robert B. Laughlin,et al.  Quantized Hall conductivity in two-dimensions , 1981 .

[48]  G. Dorda,et al.  New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance , 1980 .