The Local Nature of List Colorings for Graphs of High Girth

We consider list coloring problems for graphs $\mathcal{G}$ of girth larger than $c\log_{\Delta-1}n$, where $n$ and $\Delta\geq3$ are, respectively, the order and the maximum degree of $\mathcal{G}$, and $c$ is a suitable constant. First, we determine that the edge and total list chromatic numbers of these graphs are $\chi'_l(\mathcal{G})=\Delta$ and $\chi”_l(\mathcal{G})=\Delta+1$. This proves that the general conjectures of Bollobas and Harris [Graphs Combin., 1 (1985), pp. 115-127], Behzad [The total chromatic number, in Combinatorial Mathematics and Its Applications (Proc. Conf., Oxford, 1969), Academic Press, London, 1971, pp. 1-8], Vizing [Diskret. Analiz., 3 (1964), pp. 25-30], and Juvan, Mohar, and Skrekovski [Combin. Probab. Comput., 7 (1998), pp. 181-188] hold for this particular class of graphs. Moreover, our proofs exhibit a certain degree of “locality,” which we exploit to obtain an efficient distributed algorithm able to compute both kinds of optimal list colorings. Also, using an argument similar to one of Erdos, we show that our algorithm can compute $k$-list vertex colorings of graphs having girth larger than $c\log_{k-1}n$.

[1]  Aravind Srinivasan,et al.  End-to-end packet-scheduling in wireless ad-hoc networks , 2004, SODA '04.

[2]  松尾 悠生,et al.  List-colorings of graphs , 2007 .

[3]  Aravind Srinivasan,et al.  Fast randomized algorithms for distributed edge coloring , 1992, PODC '92.

[4]  Alessandro Panconesi,et al.  Nearly optimal distributed edge coloring in O (log log n ) rounds , 1997 .

[5]  Nathan Linial,et al.  Locality in Distributed Graph Algorithms , 1992, SIAM J. Comput..

[6]  Andrzej Czygrinow,et al.  Distributed O(Delta log(n))-Edge-Coloring Algorithm , 2001, ESA.

[7]  Aravind Srinivasan,et al.  The local nature of Δ-coloring and its algorithmic applications , 1995, Comb..

[8]  J. Kahn Asymptotics of the list-chromatic index for multigraphs , 2000 .

[9]  Alexandr V. Kostochka,et al.  List edge chromatic number of graphs with large girth , 1992, Discret. Math..

[10]  Aravind Srinivasan,et al.  Randomized Distributed Edge Coloring via an Extension of the Chernoff-Hoeffding Bounds , 1997, SIAM J. Comput..

[11]  Shuji Isobe,et al.  Total Colorings Of Degenerate Graphs , 2007, Comb..

[12]  Bruce A. Reed,et al.  A Bound on the Total Chromatic Number , 1998, Comb..

[13]  Bojan Mohar,et al.  List Total Colourings of Graphs , 1998, Combinatorics, Probability and Computing.

[14]  P. Erdös On circuits and subgraphs of chromatic graphs , 1962 .

[15]  Béla Bollobás,et al.  List-colourings of graphs , 1985, Graphs Comb..

[16]  Ravi Jain,et al.  Applying randomized edge coloring algorithms to distributed communication: an experimental study , 1995, SPAA '95.

[17]  Aravind Srinivasan,et al.  On the Complexity of Distributed Network Decomposition , 1996, J. Algorithms.

[18]  Richard M. Karp,et al.  A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.

[19]  Alessandro Panconesi,et al.  Near-Optimal, Distributed Edge Colouring via the Nibble Method , 1996, Theor. Comput. Sci..

[20]  Alexandr V. Kostochka,et al.  List Edge and List Total Colourings of Multigraphs , 1997, J. Comb. Theory B.

[21]  Tommy R. Jensen,et al.  Graph Coloring Problems , 1994 .