Optical trapping and manipulation of micrometer and submicrometer particles

Subwavelength features in conjunction with light-guiding structures have gained significant interest in recent decades due to their wide range of applications to particle and atom trapping. Lately, the focus of particle trapping has shifted from the microscale to the nanoscale. This few orders of magnitude change is driven, in part, by the needs of life scientists who wish to better manipulate smaller biological samples. Devices with subwavelength features are excellent platforms for shaping local electric fields for this purpose. A major factor that inhibits the manipulation of submicrometer particles is the diffraction-limited spot size of free-space laser beams. As a result, technologies that can circumvent this limit are highly desirable. This review covers some of the more significant advances in the field, from the earliest attempts at trapping using focused Gaussian beams, to more sophisticated hybrid plasmonic/metamaterial structures. In particular, examples of emerging optical trapping configurations are presented.

[1]  Reuven Gordon Bethe's aperture theory for arrays , 2007 .

[2]  Miles Padgett,et al.  Holographic optical tweezers and their relevance to lab on chip devices. , 2011, Lab on a chip.

[3]  M. Feingold,et al.  Rotation of single bacterial cells relative to the optical axis using optical tweezers. , 2011, Optics letters.

[4]  J. Lekner Forces on scatterers in particle beams , 2005 .

[5]  The physics of light transmission through subwavelength apertures and aperture arrays , 2009 .

[6]  G. S. Murugan,et al.  Optical manipulation of microspheres along a subwavelength optical wire. , 2007, Optics letters.

[7]  R. Gordon,et al.  Flow-dependent double-nanohole optical trapping of 20 nm polystyrene nanospheres , 2012, Scientific Reports.

[8]  An optical trap combined with three-color FRET. , 2013, Journal of the American Chemical Society.

[9]  Ethan Schonbrun,et al.  Optical manipulation with planar silicon microring resonators. , 2010, Nano letters.

[10]  V. G. Truong,et al.  Higher order mode propagation in an optical nanofiber , 2012 .

[11]  Miles J. Padgett,et al.  Tweezers with a twist , 2011 .

[12]  J. Gates,et al.  On-a-chip surface plasmon tweezers , 2011 .

[13]  F. J. Rodríguez-Fortuño,et al.  Coaxial plasmonic waveguide array as a negative-index metamaterial. , 2009, Optics letters.

[14]  Baojun Li,et al.  Particle sorting using a subwavelength optical fiber , 2013 .

[15]  Síle Nic Chormaic,et al.  Higher order microfibre modes for dielectric particle trapping and propulsion , 2014, Scientific Reports.

[16]  S Kawata,et al.  Optically driven Mie particles in an evanescent field along a channeled waveguide. , 1996, Optics letters.

[17]  Nancy R. Forde,et al.  Brownian motion in a modulated optical trap , 2007 .

[18]  M. Lipson,et al.  Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides , 2009, Nature.

[19]  D V Petrov,et al.  Raman spectroscopy of optically trapped particles , 2007 .

[20]  K. Dholakia,et al.  Optical trapping for analytical biotechnology. , 2012, Current opinion in biotechnology.

[21]  T. Čižmár,et al.  Bidirectional optical sorting of gold nanoparticles. , 2012, Nano letters.

[22]  F. J. García de abajo,et al.  Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas. , 2009, Nano letters.

[23]  Síle Nic Chormaic,et al.  TAPERED FEW-MODE FIBERS: MODE EVOLUTION DURING FABRICATION AND ADIABATICITY , 2011 .

[24]  E. Jelley Molecular, Nematic and Crystal States of I : I′-Diethyl-Ψ-Cyanine Chloride , 1937, Nature.

[25]  Christoph F. Schmidt,et al.  Direct observation of kinesin stepping by optical trapping interferometry , 1993, Nature.

[26]  Harekrushna Sahoo,et al.  Förster resonance energy transfer - A spectroscopic nanoruler: Principle and applications , 2011 .

[27]  Fang-Wen Sheu,et al.  Trapping and Propelling Microparticles at Long Range by Using an Entirely Stripped and Slightly Tapered No-Core Optical Fiber , 2013, Sensors.

[28]  Ernst-Ludwig Florin,et al.  Ultrastrong optical binding of metallic nanoparticles. , 2012, Nano letters.

[29]  H. Flyvbjerg,et al.  Power spectrum analysis for optical tweezers , 2004 .

[30]  Kuo-Nan Liou,et al.  A complementary theory of light scattering by homogeneous spheres , 1977 .

[31]  M. Lipson,et al.  Optofluidic trapping and transport on solid core waveguides within a microfluidic device. , 2007, Optics express.

[32]  Luis Javier Martínez,et al.  Light-assisted, templated self-assembly using a photonic-crystal slab. , 2013, Nano letters.

[33]  D. Erickson,et al.  Forces and transport velocities for a particle in a slot waveguide. , 2009, Nano letters.

[34]  Cornelia Denz,et al.  Advanced optical trapping by complex beam shaping , 2013 .

[35]  T. Maiman Stimulated Optical Radiation in Ruby , 1960, Nature.

[36]  David Erickson,et al.  Nanomanipulation using near field photonics. , 2011, Lab on a chip.

[37]  Michelle D. Wang,et al.  Optical torque wrench: angular trapping, rotation, and torque detection of quartz microparticles. , 2004, Physical review letters.

[38]  R. Quidant Plasmonic tweezers—The strength of surface plasmons , 2012 .

[39]  Manipulation of dielectric particles using photonic crystal cavities , 2006 .

[40]  Simon Hanna,et al.  Polarization-induced torque in optical traps , 2007 .

[41]  J. P. Woerdman,et al.  Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[42]  J. Glückstad,et al.  Gearing up for optical microrobotics: micromanipulation and actuation of synthetic microstructures by optical forces , 2013 .

[43]  A. Ashkin Acceleration and trapping of particles by radiation pressure , 1970 .

[44]  Thijs van Leest,et al.  Cavity-enhanced optical trapping of bacteria using a silicon photonic crystal. , 2013, Lab on a chip.

[45]  T. Perkins,et al.  Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating. , 2006, Optics letters.

[46]  Juan José Sáenz,et al.  Scattering forces from the curl of the spin angular momentum of a light field. , 2009, Physical review letters.

[47]  M. Padgett,et al.  Optical tweezers: a light touch , 2012, Journal of microscopy.

[48]  Baojun Li,et al.  Backward transport of nanoparticles in fluidic flow. , 2012, Optics express.

[49]  Fadi Issam Baida,et al.  Three-dimensional structures for enhanced transmission through a metallic film: Annular aperture arrays , 2003 .

[50]  Juejun Hu,et al.  Design of nanoslotted photonic crystal waveguide cavities for single nanoparticle trapping , 2009, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[51]  Abhay Kotnala,et al.  Quantification of high-efficiency trapping of nanoparticles in a double nanohole optical tweezer. , 2014, Nano letters.

[52]  Raktim Dasgupta,et al.  Optical orientation and rotation of trapped red blood cells with Laguerre-Gaussian mode. , 2011, Optics express.

[53]  K. Grujić,et al.  Dielectric microsphere manipulation and chain assembly by counter-propagating waves in a channel waveguide. , 2007, Optics express.

[54]  Steven M Block,et al.  Optical tweezers study life under tension. , 2011, Nature photonics.

[55]  R. Quidant,et al.  Three-dimensional manipulation with scanning near-field optical nanotweezers. , 2014, Nature nanotechnology.

[56]  David B. Phillips,et al.  "Red Tweezers": Fast, customisable hologram generation for optical tweezers , 2014, Comput. Phys. Commun..

[57]  David Erickson,et al.  Stability analysis of optofluidic transport on solid-core waveguiding structures , 2008, Nanotechnology.

[58]  James S. Wilkinson,et al.  Propulsion of gold nanoparticles on optical waveguides , 2002 .

[59]  R. G. Cox,et al.  Slow viscous motion of a sphere parallel to a plane wall—I Motion through a quiescent fluid , 1967 .

[60]  Tomáš Čižmár,et al.  Optical conveyor belt for delivery of submicron objects , 2005 .

[61]  P. Denti,et al.  Radiation torque and force on optically trapped linear nanostructures. , 2008, Physical review letters.

[62]  K. Hakuta,et al.  Optical nanofiber-based photonic crystal cavity. , 2014, Optics letters.

[63]  David T. Leighton,et al.  INERTIAL LIFT ON A MOVING SPHERE IN CONTACT WITH A PLANE WALL IN A SHEAR FLOW , 1995 .

[64]  Wei-Yi Tsai,et al.  Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic archimedes spiral. , 2014, Nano letters.

[65]  J. Wilkinson,et al.  Sorting of polystyrene microspheres using a Y-branched optical waveguide. , 2005, Optics express.

[66]  Pin-Tso Lin,et al.  All-optical controllable trapping and transport of subwavelength particles on a tapered photonic crystal waveguide. , 2011, Optics letters.

[67]  Romain Quidant,et al.  Plasmon-assisted optofluidics. , 2011, ACS nano.

[68]  E. Schonbrun,et al.  Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink. , 2011, Nature communications.

[69]  Romain Quidant,et al.  Self -induced back-action optical trapping of dielectric nanoparticles , 2009 .

[70]  Reuven Gordon,et al.  Extraordinary optical transmission brightens near-field fiber probe. , 2011, Nano letters.

[71]  G J Brakenhoff,et al.  Micromanipulation by "multiple" optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope. , 1993, Cytometry.

[72]  Ivan Amato,et al.  Nanotechnologists Seek Biological Niches , 2005, Cell.

[73]  M. Lipson,et al.  High confinement in silicon slot waveguides with sharp bends. , 2006, Optics express.

[74]  Christian Santschi,et al.  Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas. , 2010, Nano letters.

[75]  Halina Rubinsztein-Dunlop,et al.  The effect of Mie resonances on trapping in optical tweezers. , 2008, Optics express.

[76]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[77]  Wolfgang Wende,et al.  STED nanoscopy combined with optical tweezers reveals protein dynamics on densely covered DNA , 2013, Nature Methods.

[78]  K. Lister,et al.  Slotted photonic crystal nanobeam cavity with an ultrahigh quality factor-to-mode volume ratio. , 2013, Optics express.

[79]  Kishan Dholakia,et al.  Optical forces near a nanoantenna , 2010 .

[80]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[81]  Arthur Ashkin,et al.  Trapping of Atoms by Resonance Radiation Pressure , 1978 .

[82]  Giovanni Volpe,et al.  Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range. , 2008, Physical review letters.

[83]  Optical trapping of metal-dielectric nanoparticle clusters near photonic crystal microcavities , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[84]  Takuo Tanaka,et al.  Optically induced propulsion of small particles in an evenescent field of higher propagation mode in a multimode, channeled waveguide , 2000 .

[85]  Jeff Young,et al.  Ultrasensitive diagnostic analysis of Au nanoparticles optically trapped in silicon photonic circuits at sub-milliwatt powers. , 2014, Nano letters.

[86]  M. Povinelli,et al.  Light-assisted templated self assembly using photonic crystal slabs. , 2011, Optics express.

[87]  Erika Pastrana,et al.  Optogenetics: controlling cell function with light , 2011, Nature Methods.

[88]  R. Blanchard,et al.  Generation of two-dimensional plasmonic bottle beams. , 2013, Optics express.

[89]  Baojun Li,et al.  Bidirectional optical transportation and controllable positioning of nanoparticles using an optical nanofiber. , 2012, Nanoscale.

[90]  Ya-Tang Yang,et al.  Transport and trapping in two-dimensional nanoscale plasmonic optical lattice. , 2013, Nano letters.

[91]  Romain Quidant,et al.  Plasmon nano-optical tweezers , 2011 .

[92]  K. Svoboda,et al.  Biological applications of optical forces. , 1994, Annual review of biophysics and biomolecular structure.

[93]  Yoshito Y. Tanaka,et al.  Optical trapping through the localized surface-plasmon resonance of engineered gold nanoblock pairs. , 2011, Optics express.

[94]  T. Asano,et al.  Ultra-high-Q photonic double-heterostructure nanocavity , 2005 .

[95]  H. Atwater,et al.  Plasmon dispersion in coaxial waveguides from single-cavity optical transmission measurements. , 2009, Nano letters.

[96]  Michal Lipson,et al.  Ultrasmall mode volumes in dielectric optical microcavities. , 2005, Physical review letters.

[97]  Carlos Bustamante,et al.  Differential detection of dual traps improves the spatial resolution of optical tweezers. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[98]  Pavel Zemanek,et al.  Optical trapping in counter-propagating Bessel beams , 2004, SPIE Optics + Photonics.

[99]  Shiyun Lin,et al.  An integrated microparticle sorting system based on near-field optical forces and a structural perturbation. , 2012, Optics express.

[100]  Amr A E Saleh,et al.  Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures. , 2012, Nano letters.

[101]  G. Scheibe,et al.  Polymerisation und polymere Adsorption als Ursache neuartiger Absorptionsbanden von organischen Farbstoffen , 2005, Naturwissenschaften.

[102]  Qing Yang,et al.  Rapid fabrication of large-area concave microlens arrays on PDMS by a femtosecond laser. , 2013, ACS applied materials & interfaces.

[103]  Aftab Ahmed,et al.  Surface-Enhanced Raman Spectroscopy Using Lipid Encapsulated Plasmonic Nanoparticles and J-Aggregates To Create Locally Enhanced Electric Fields , 2013 .

[104]  Kohzo Hakuta,et al.  Cavity quantum electrodynamics on a nanofiber using a composite photonic crystal cavity. , 2014, Physical review letters.

[105]  K. Toussaint,et al.  Femtosecond-Pulsed Plasmonic Nanotweezers , 2012, Scientific Reports.

[106]  Ravi Kumar,et al.  Spectroscopy, Manipulation and Trapping of Neutral Atoms, Molecules, and Other Particles Using Optical Nanofibers: A Review , 2013, Sensors.

[107]  O. Maragò,et al.  Evanescent wave optical trapping and transport of micro- and nanoparticles on tapered optical fibers , 2012 .

[108]  Arvind Balijepalli,et al.  Significantly improved trapping lifetime of nanoparticles in an optical trap using feedback control. , 2012, Nano letters.

[109]  E. Florin,et al.  Direct observation of nondiffusive motion of a Brownian particle. , 2005, Physical review letters.

[110]  K. Deasy,et al.  Interaction of laser-cooled 87Rb atoms with higher order modes of an optical nanofibre , 2013, 1311.6860.

[111]  Jing Bu,et al.  Microlens-array-enabled on-chip optical trapping and sorting. , 2011, Applied optics.

[112]  W. Greenleaf,et al.  Direct observation of base-pair stepping by RNA polymerase , 2005, Nature.

[113]  Rui Xu,et al.  Optical trapping, driving, and arrangement of particles using a tapered fibre probe , 2012, Scientific Reports.

[114]  Kishan Dholakia,et al.  Brownian particle in an optical potential of the washboard type. , 2003, Physical review letters.

[115]  H. Lezec,et al.  Extraordinary optical transmission through sub-wavelength hole arrays , 1998, Nature.

[116]  T. Birks,et al.  Shape of fiber tapers , 1992 .

[117]  Norman R. Heckenberg,et al.  Optically trapped and driven paddle-wheel , 2013 .

[118]  B. Uhlin,et al.  P-fimbriae in the presence of anti-PapA antibodies: new insight of antibodies action against pathogens , 2013, Scientific Reports.

[119]  M Mazilu,et al.  Optical deflection and sorting of microparticles in a near-field optical geometry. , 2008, Optics express.

[120]  H. Kimble,et al.  Demonstration of a state-insensitive, compensated nanofiber trap. , 2012, Physical review letters.

[121]  J M Ward,et al.  Contributed review: optical micro- and nanofiber pulling rig. , 2014, The Review of scientific instruments.

[122]  Romain Quidant,et al.  Surface‐plasmon‐based optical manipulation , 2008 .

[123]  Muhammad Waleed,et al.  Single-cell optoporation and transfection using femtosecond laser and optical tweezers. , 2013, Biomedical optics express.

[124]  Maria Teresa Neves-Petersen,et al.  Plasmon-assisted delivery of single nano-objects in an optical hot spot. , 2013, Nano letters.

[125]  Christopher D. Mellor,et al.  Array formation in evanescent waves. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[126]  B Agate,et al.  Femtosecond optical tweezers for in-situ control of two-photon fluorescence. , 2004, Optics express.